Napsu Karmitsa | Adil Bagirov | Marko M. Mékela

Empirical and Theoretical Comparisons of
Several Nonsmooth Minimization Methods
and Software

Turku CENTRE for COMPUTER SCIENCE

TUCS Technical Report
No 959, October 2009

1

Empirical and Theoretical Comparisons of

Several Nonsmooth Minimization Methods
and Software

Napsu Karmitsa
Department of Mathematics
University of Turku
FI-20014 Turku, Finland
napsu@armtsa.fi
Adil Bagirov
Centre for Informatics and Applied Optimization
School of Information Technology and Mathematical Science
University of Ballarat
University Drive, Mount Helen, PO Box 663
Ballarat, VIC 3353, Australia.
a. bagi rov@al | arat . edu. au

Marko M. Makela _
Department of Mathematics

University of Turku
FI-20014 Turku, Finland
makel a@ut u. fi

TUCS Technical Report
No 959, October 2009

Abstract

The most of nonsmooth optimization methods may be dividégd@main groups:

subgradient methods and bundle methods. Usually, wheriageng new algo-

rithms and testing them, the comparison is made betweetesikinds of meth-

ods. In this report we test and compare both different buntéhods and dif-

ferent subgradient methods as well as some methods whictbenegnsidered as
hybrids of these two and/or some others. All the solvergtkate so-called gen-
eral black box methods which, at least in theory, can be usasdlte almost all

kinds of problems. The test set included large amount oéfit unconstrained
nonsmooth minimization problems. That is, for instanceywvea and nonconvex
problems, piecewise linear and quadratic problems andierabwith different

sizes. The aim of this work is not to foreground some methad the others but
to get some kind of insight which kind of method to select fertain types of

problems.

Keywords: Nondifferentiable programming, bundle methods, subgratdineth-
ods, numerical performance.

TUCS Laboratory
Applied Mathematics

1 Introduction

We compare different nonsmooth optimization (NSO) metHodsolving uncon-
strained optimization problems of the form

minimize flx

{ (@) -

suchthat = e R",

where the objective functiorf : R" — R is supposed to be locally Lipschitz
continuous. Note that no differentiability or convexitysamptions are made.

Problems of type (P) are encountered in many applicaticaisafer instance,
in economics [41], mechanics [40], engineering [39], colrttieory [12], optimal
shape design [19], data mining [1, 8] and in particular dusinalysis [13], and
machine learning [22].

The most of methods for solving these problems may be dividlégdo main
groups: subgradient (see e.g. [5, 6, 45, 46]) and bundleadst(see e.g. [15, 20,
24,31, 34, 37, 43, 44]). Both of these methods have their oppaters. Usually,
when developing new methods and doing some numerical expets with them,
the researchers compare the new method with similar kindsetfiods. That is,
bundle methods are compared with bundle methods and subgtacdethods are
compared with other subgradient methods. Moreover, it ilsquommon that
the test set used is rather concise (sometimes only a cotipl®ldems), which
naturally does not give a good impression of how the algoribould perform in
different kinds of problems.

In this report we compare both different subgradient meshaxaid different
bundle methods, as well as some methods that lie betwees tives Moreover,
we use a broad test settings including different classe®on$mooth problems.
The methods included in our tests are the following:

e Subgradient methods:

— standard subgradient method [45],
— Shor’sr-algorithm [21, 26, 45],

o Bundle methods:

— proximal bundle method [37],
— bundle-Newton method [30],

e Hybrid methods:

— limited memory bundle method [17, 18],
— discrete gradient method [4] and
— quasi-secant method [2, 3].

All the solvers tested are so-called general black box nustlamd, naturally, can
not beat the codes designed specially for a particular ofgg®blems (say e.g. for

1

piecewise linear, min-max, or partially separable prolderhiowever, rather than
seeing this generality as a weakness, it should be seenrasgthtdue to the min-
imal information of the objective function required for tbalculations. Namely,
the value of the objective function and, possible, one &tyjtsubgradient (gen-
eralized gradient [11]) at each point.

The aim of our research is not to foreground some method beesthers — it
is a well known fact that different methods work well for @ifent types of prob-
lems and none of them is good for all types of problems — buetosgme kind
of insight which kind of method to select for certain typegpobblems. Suppose,
for instance, that you want to minimize a problem known to baaonvex and
nonsmooth with 200 variables. In this work, we are going talyre which is the
best method to use.

The report is organized as follows. Section 2 introducesNB® methods
tested and compared. The results of the numerical expetsnaea presented and
discussed in Section 3 and Section 4 concludes the repogieeslour credentials
for good-performing algorithms for different problem ddas.

In what follows we denote by-|| the Euclidean norm ifR™ and bya’b the
inner product of vectore and b (bolded symbols are used for vectors). The
subdifferential 0 f (x) [11] of a locally Lipschitz continuous functiofi: R* — R
at any pointe € R” is given by

Of(x) = conv{ lim Vi(xz;) | x; — xand V f(x;) exists},

where ‘tonv” denotes the convex hull of a set. Each vegor 0f(x) is called
asubgradient. The pointz* € R" is calledsubstationary if 0 € 0f(x*). Substa-
tionarity is a necessary condition for local optimality amdthe convex case, it is
also sufficient for global optimality.

2 Methods

In this section we give short descriptions of the methodsea@dampared. The
implementational details are given in Section 3 and in tHeremces. In what
follows (if not stated otherwise), we assume that at evemgtpowe can evaluate
the value of the objective functiofix) and an arbitrary subgradiegtfrom the
subdifferentiabd f (x).

2.1 Standard Subgradient Method

The first method to be considered here is the cornerstone GFf Ntandard sub-
gradient method [45].

The idea behind subgradient methods (Kiev methods) is tergéne smooth
methods (e.g. steepest descent method) by replacing ttiegtavith an arbitrary

2

subgradient. Therefore, the iteration formula for theséhods is

&n

Ty = T — tk—HE I
k

whereg, € 0f(x;) is any subgradient ang > 0 is a predetermined step size.

Due to this simple structure and low storage requirementsyrsdient meth-
ods are widely used methods in NSO. However, basic subgraaiethods suffer
from some serious disadvantages: a nondescent searctiatire@y occur and
thus, the selection of step size is difficult; there existeimglementable subgradi-
ent based stopping criterion; and the convergence speeigipot even linear)
(see e.qg. [27]).

The standard subgradient method is proved to be globallyezgant if the
objective function is convex and step sizes satisfy

k—o00

lim ¢, =0 and th = 0.
j=1
An extensive overview of various subgradient methods caioined in [45].

2.2 Shor’sr-algorithm (Space Dilation Method)

Next we shortly describe the ideas of more sophisticatedraulient method, the
well-known, Shor’sr-algorithm with space dilations along the difference of two
successive subgradients. The basic idea of Shealgorithm is to interpolate
between steepest descent and conjugate gradient method.

Let f be a convex function oR™. Shor’sr-algorithm is given as follows:

PROGRAM Shor’s r-al gorithm
INITIALIZE o € R", B€(0,1) , By=1, and t; >0;
Conput e &, € df(xo) and z1 = zo — t1€;
Set & =¢, and k=1;
WHILE the term nation condition is not net
Conput e &, € df(x) and & = Bl &
Cal culate 7, =&, — &, and s =r;/||rg;
Conput e By = ByRg(sg), where Rg(sg) =1+ (8—1)sis}
is the space dilation nmatri x;
Cal culate &,,, = B[, &
Choose a step size tiiq;
Set LTpy1 = T — thkJrlEk_;’_l and k =k +1;
END WHILE
RETURN final solution x;
END Shor’s r-al gorithm

In order to turn the above-algorithm into an efficient optimization routine, one
has to find a solution to the following problems: how to chotteestep sizes,

3

(including the initial step size¢;) and how to design a stopping criterion which
does not need information on subgradients.

If the objective function is twice continuously differealtle, its Hessian is
Lipschitz, and the starting point is chosen from some neagidod of the opti-
mal solution, then the-step quadratic rate convergence can be proved for Shor’s
r-algorithm [45]. In the nonconvex case, if the objectivedtion is coercive un-
der some additional assumptions, thalgorithm is convergent to isolated local
minimizers [45].

2.3 Proximal Bundle Method (PBM)

In this subsection we describe the ideas of the proximal leumetthod (PBM)
for nonsmooth and nonconvex minimization. For more detaésrefer to [25],
[37] and [44].

The basic idea of bundle methods is to approximate the whdidierential
of the objective function instead of using only one arbitranbgradient at each
point. In practice, this is done by gathering subgradiemusfthe previous itera-
tions into a bundle. Suppose that at th#h iteration of the algorithm we have the
current iteration poink;, and some trial pointg; € R" (from past iterations) and
subgradient§; € df(y,) for j € Ji, where the index sef, is a nonempty subset
of {1,...,k}.

The idea behind PBM is to approximate the objective funcfidmelow by a
piecewise linear function, that ig,is replaced by so calleclitting-plane model

Ji(@) = max {f(y,) + & (@ — y,)}. (1)
This model can be written in an equivalent form
flz) = max {f(mp) + & (@ —) — o},
where
of = flaz) — fly;) — & (xx —y;) forall je J.

is a so-calledinearization error. If f is convex, themg‘? > 0 forall j € J, and

fr(®) < f(x) for all z € R". In other words, the cutting-plane modgl is
an under estimate fof and the nonnegative linearization ermg?r measures how
good an approximation the model is to the original problemthle nonconvex
case, these facts are not valid anymore and thus the Iilaa'anzerroraf can be
replaced by so calleslbgradient locality measure (cf. [24])

By = max {|a}], vl — y;°}, 2)

wherey > 0 is thedistance measure parameter (y = 0 if f is convex). Then
obviouslys} > 0 for all j € J, andmingex fr(x) < f(xx).

4

The descent direction is calculated by
. P 1
d, = argmlnd€R7z{fk<£Ek + d) -+ §deTd}, (3)

where the stabilizing terr%mded guarantees the existence of the solutiprand
keeps the approximation local enough. The weighting patame > 0 improves
the convergence rate and accumulates some second ordenatifan about the
curvature off aroundz;, (see e.g. [25, 37, 44]).

In order to determine the step size into the search direaljgrPBM uses

so-calledline search procedure: Assume thatn;, € (0,3), mg € (my,1) and

t € (0,1] are some fixed line search parameters. We first search foatpest
numbert’ € [0, 1] such thatt > ¢ and
flxp +t7dy) < f(r) +mptiog, 4)
whereuv,, is the predicted amount of descent
vk = ful@y +di) — flx) < 0.
If such a parameter exists we takéoag serious step
Ty = T + thd, and Yy, = T (5)
Otherwise, if (4) holds but < ¥ < ¢, we take ashort serious step
Tyl = T + t’zdk and Ypr1 = T + t’gdk
and, ifth = 0, we take anull step
Tk+1 = T and Y1 = Tk T+ t]fgdk, (6)
wheret, > t% is such that
—By 4 Efdk = mguy. (7)

In short serious steps and null steps there exists disaotytim the gradient off.
Then the requirement (7) ensures thatandy, ., , lie on the opposite sides of this
discontinuity and the new subgradieft_, € 0f(y,,) will force a remarkable
modification of the next search direction finding problem.

The iteration is terminated if

Vi 2 —Eg,

wherees, > 0 is a final accuracy tolerance supplied by the user.
The pseudo-code of general bundle method is the following:

PROGRAM bundl e net hod
INITIALIZE x; € R", &, € Of(x1), J1, v, and &5 > 0;
Set k=1,
WHILE the termination condition || <es i s not met
Cenerate the search direction dg;
Find step sizes t¥ and th;
Update xp, v, and Jg;
Set k=k+1;
Eval uate f(xy) and &, € 0f(xy);
END WHILE
RETURN final solution x;
END bundl e net hod

Under the upper semi-smoothness assumption [7] PBM camdvegto be glob-
ally convergent for locally Lipschitz continuous objeetifunctions, which are
not necessarily differentiable or convex (see e.g. [25).3id]addition, in order to
implement the above algorithm one has to bound somehow tméd&uof stored
subgradient and trial points, that is, the cardinality afer setJ,. The global
convergence of bundle methods with a limited number of stetdgradients can
be guaranteed by using a subgradient aggregation stra2dy§yywyhich accumu-
lates information from the previous iterations. The cogeerce rate of PBM is
linear for convex functions [42] and for piecewise lineanlpems PBM achieves
a finite convergence [44].

2.4 Bundle Newton Method BNEW)

Next we describe the main ideas of the second order bundiddemethod
(BNEW) [30]. We suppose that at eaah € R™ we can evaluate, in addition
to the function value and an arbitrary subgradig¢rt 0f(x), also am x n sym-
metric matrixG(x) approximating the Hessian matriX? f (). Now, instead of
piecewise linear cutting-pane model (1) we introduce aguigége quadratic model
of the form

fi(@) = max {f(y;) + & (@ —y,) + %@j(fv —vy)' Gz -y}, (8

whereG; = G(y;) andp; € [0,1] is some damping parameter. The model (8)
can be written equivalently as

i) = max {F(w) + €8 (@ — m) + S0, —)" Gyl — mi) — o}

and for allj € J, the linearization error takes the form
k __ T 1 TG 9
a; = f(x) _f<yj) _éj (wk_yj) - égj(wk_yj) j(wk_yj)' 9)

6

Note that now, even in the convex case, might be negative. Therefore we
replace the linearization error (9) by the subgradientliceeasure (2) and we
remain the propertyningeg- fx(x) < f(x:) (see [30]).

The search directiod,, € R™ is now calculated as the solution of

d, = argmindeRn{fk(mk + d)} (10)

The line search procedure of BNEW follows the same prinsiphain in PBM
(see Section 2.3). The only remarkable difference occutisdriermination con-
dition for short and null steps. In other words, (7) is repldby two conditions

k
_ﬂlljill + (Ekidek > MR

and
||33k+1 - yk+1” < Cs,

whereC's > 0 is a parameter supplied by the user.

The pseudo-code for the method is the same as for PBM (see®2®). Un-
der the upper semi-smoothness assumption [7] BNEW can egto be glob-
ally convergent for locally Lipschitz continuous obje&ifunctions. For strongly
convex functions, the convergence rate of BNEW is supeatifg0].

2.5 Limited Memory Bundle Method (LMBM)

In this subsection, we very shortly describe the limited ragnibundle algorithm
(LMBM) [16, 17, 18, 23] for solving general, possibly noneer, large-scale
NSO problems. The method is a hybrid of the variable metrmadbeimethods [31,
47] and the limited memory variable metric methods (seg£0j), where the first
ones have been developed for small- and medium-scale natisroptimization
and the latter ones, on the contrary, for smooth large-sqaleization.

LMBM exploits the ideas of the variable metric bundle methiatkmely the
utilization of null steps, simple aggregation of subgratse and the subgradient
locality measures, but the search directiyns calculated using a limited memory
approach. That is,

dy, = — D€,

where£, is (an aggregate) subgradient ahy is the limited memory variable
metric update that, in the smooth case, represents thexapyation of the inverse
of the Hessian matrix. Note that the matrix, is not formed explicitly but the
search directiowl,, is calculated using the limited memory approach.

LMBM uses the original subgradieg}, after the serious step (cf. (5)) and the
aggregate subgradieég after the null step (cf. (6)) for direction finding (i.e. we
seték = &, if the previous step was a serious step). The aggregatiaeguve is

7

carried out by determining multipliers’ satisfying\® > 0 for all i € {1,2,3},
and>"? . \F = 1 that minimize the function

i=1""

(A, A, Az) = (M€, + o€y + Ay] DM€ + Aabpr + A€y |
+ 2(A2Brkt1 + A30k)-

Hereg,, € Of(xs) is the current subgradient:(denotes the index of the itera-
tion after the latest serious step, 8. = ,,), &, € 0f(y,,,) is the auxiliary
subgradient, anék is the current aggregate subgradient from the previoua-iter
tion (El = &,). In addition, ;. is the current subgradient locality measure (cf.
(2)) and3; is the current aggregate subgradient locality measgire<0). The
resulting aggregate subgradiégLrl and aggregate subgradient locality measure
(41 are computed from the formulae

ék—i—l = \[€,, + /\l2€€k+1 + /\]3€ék and Bkﬂ = \sBrir +)\’;Bk

The line search procedure used in LMBM is rather similar tat thised in
PBM (see Section 2.3). However, due to the simple aggreyatiocedure above
only one trial pointy,,, = @, + t}d) and a corresponding subgradient , €
Jf(y;,1) need to be stored.

As a stopping parameter, we use the value

~T ~
wy = =& dy + 20

and we stop itw, < e, for some user specified > 0. The parametew, is also
used during the line search procedure to represent theabEsamount of descent
(cf. v in PBM).

In LMBM both the limited memory BFGS (L-BFGS) and the limited mery
SR1 (L-SR1) update formulae [10] are used in calculationse§#arch direction
and the aggregate values. The idea of limited memory magpdating is that
instead of storing large x n matricesD,, one stores a certain (usually small)
number of vectors obtained at the previous iterations ofaterithm, and uses
these vectors to implicitly define the variable metric neasi. In the case of a null
step, we use the L-SR1 update, since this update formulasliswio preserve the
boundedness and some other properties of generated ratriteh guarantee
the global convergence of the method. Otherwise, sincesthexperties are not
required after a serious step, the more efficient L-BFGS @pdatmployed (for
more details, see [16, 17, 18]).

The pseudo-code of LMBM is the following:

PROGRAM LMBM
INITIALIZE x; € R, &, € 0f(x1), and &5 > 0;
Set k=1 and d; = —&;;
WHILE the termination condition w,<e, i S not net
Find step sizes tf and t;
Update x; t0 xpiq;
Eval uate f(zy11) and &, € 0f(zy + thdy);
IF t§ >0 THEN
Conpute the search direction d, using &, and L-BFGS
updat e;
ELSE
Conput e the aggregate subgradi ent Ek+1i
Comput e the search direction d; using EkH and L-SR1
updat e;
END IF
Set k=Fk+1,
END WHILE
RETURN final solution x;
EnND LMBM

Under the upper semi-smoothness assumption [7] LMBM canrbeed to be
globally convergent for locally Lipschitz continuous otfjee functions [16, 18].

2.6 Discrete Gradient Method OGM)

Next we briefly describe the discrete gradient method (DGMWhre details can
be found in [4]. The idea of DGM is to hybridize derivative drenethods with
bundle methods. In contrast with bundle methods, whichiredgbe computation
of a single subgradient of the objective function at eaci point, DGM approx-
imates subgradients by discrete gradients using funcidmeg only. Similarly
to bundle methods the previous values of discrete grademetgjathered into a
bundle and the null step is used if the current search dmecsinot good enough.
We start with the definition of the discrete gradient. Let asate by

S1={geR"|lgll =1}
the sphere of the unit ball and by
P={z|2:R, =R, A>0, \'2(\) — 0, A — 0}
the set of univariate positive infinitesimal functions. bidéion, let
G={ecR"|e=(e1,...,en),]e;| =1, 7=1,...,n}

be a set of all vertices of the unit hypercubel®i. We take anyg € Si,
e € G, z € P, a positive numberx € (0,1], and we compute =

9

argmax{|g;|, 7 = 1,...,n}. Fore € G we define the sequence ofvectors
el(a) = (aer,a?eq,...,a0¢;,0,...,0) 7 =1,...,nand forz € R" and\ > 0,
we consider the points

Ty =+ \g, x; = xy+ 2(\)e (a), j=1,...,n.

DEFINITION 2.1. Thediscrete gradient of the functionf at the pointe € R™ is the

vectorl(z, g, e, 2z, \,a) = (T}, ..., T) € R™ with the following coordinates:
F; = [’Z<)\)Oéj€j)]71 [f(w3> - f(wjfl)] ’ j = 17 RN j % (
L= (Ag) ™" [fl+Ag) = fl&) =X Y Tig;
j=1,57i

It has been proved in [4] that the closed convex set of dis@eddients

Do(xz,) =clconv{iv e R" |[3ge S, ec G, z€ P
such that = T(x, g, e, 2, \, o)}

is an approximation to the subdifferenti@f (x) for sufficiently smallx > 0.
Thus, it can be used to compute the descent direction forlifeztive. However,
the computation of the whole s& (x, \) is not easy, and therefore, in DGM we
use only a few discrete gradients from the set to calculae#scent direction.

Let us denote by the index of the subiteration in the direction finding proce-
dure, byk the index of the outer iteration and kyhe index of inner iteration. We
start by describing the direction finding procedure. In wiodbws we use only
the iteration countelrwhenever possible without confusion. At every iteratign
we first compute the discrete gradiant = T(x, g,, €, 2, A,) with respect to
any initial directiong, € S; and we set the initial bundle of discrete gradients
D, (x) = {v,}. Then we compute the vector

w; = argminwef)l(m) H’LU||2,

that is the distance between the convex lyllxz) of all computed discrete gradi-
ents and the origin. If this distance is less than a givenrdoleed > 0 we accept
the pointz as an approximate stationary point and go to the next oweation.
Otherwise, we compute another search direction

w;

It = |

and we check whether this direction is descent. If it is, weesha

f(®+2Ag111) = () < =i\ [[wi],

10

with the given numbers, € (0,1) andX > 0. Then we setl;,, = g,,,, Vi, = w;
and stop the direction finding procedure. Otherwise, we adgenanother discrete

gradientv,,; = I'(x, g,,,, €, 2z, A, a) into the directiong,, ;, update the bundle
of discrete gradients

Diy1(z) = conv{Dy(x) U {v;:1}}.

and continue the direction finding procedure with- [+ 1. Note that, at each
subiteration the approximation of the subdifferentigl(x) is improved. It has
been proved in [4] that the direction finding procedure isieating.

When the descent directiaf), has been found, we need to compute the next
(inner) iteration pointe;, ., = x, + i, dy,, Where the step sizi, is defined as

ty, = argmax{t > 0| f(xx, + tdy,) — f(@r,) < —cot[lvg,

}s

with givenc, € (0, ¢q].
The pseudo-code of DGM is the following:

PROGRAM DGM
INITIALIZE x1 € R™ and k= 1;
OUTER ITERATION
Set s=1 and xj, = xy;
WHILE the termination condition is not net
INNER ITERATION
Conpute the vector vy, =argnn,cpe, vl
where D(z,) is a set of discrete subgradients.
IF [|vg,]| <0 With 6 >0 s.t. 6 \,0 when k& — oo THEN
Set xpy1 =x, and k=k+1,
Go to the next OUTER ITERATION;
ELSE
Conpute the descent direction di=—wvg,/| vkl
Find a step size t;
Construct the following iteration my,, =y + t"dy;
Set s=s+1 and go to the next INNER ITERATION,;
END IF
END INNER ITERATION
END WHILE
END OUTER ITERATION
RETURN final solution x;
EnD DGM

In [4] it is proved that DGM is globally convergent for locgalLipschitz con-
tinuous functions under assumption that the set of disgetdients uniformly
approximates the subdifferential.

11

2.7 Quasisecant method@SM)

In this subsection we briefly describe the quasisecant mgi@&M). More de-
tails can be found in [2, 3]. Here, it is again assumed thataamecompute both
the function value and one subgradient at any point.

QSM can be considered as a hybrid of bundle methods and gtadiepling
method [9]. The method builds up information about the apjpnation of the
subdifferential using bundling idea, which makes it simi@ bundle methods,
while subgradients are computed from a given neighborhdactarrent iteration
point, which makes the method similar to gradient samplirghod.

We start this subsection with the definition of a quasiset@mibcally Lips-
chitz continuous functions.

DEFINITION 2.2. A vectorv € R" is called aquasisecant of the functionf at the
pointx € R™ in the directiong € S; with the lengthh > 0 if

f(z + hg) - f(z) < h'g.

We will denote this quasisecant byx, g, h).
For a givenh > 0 let us consider the set of quasisecants at a point

QSec(x,h) ={w e R" |Ig € Sy s.t.w =v(x,g,h)}
and the set of limit points of quasisecantgias, 0:

QSL(x) ={w € R" |dg € 51, hx >0, h \, 0 when k — oo
stw= 1}1_)11;10 v(x, g, hy)}.
A mappingxz — QSec(x, h) is called asubgradient-related (SR)-quasisecant
mapping if the corresponding se)SL(x) C Of(x) for all z € R™. In this
case elements @) Sec(x, h) are calledSR-quasisecants. In the sequel, we will
consider set§)Sec(x, h) which contain only SR-quasisecants.
It has been shown in [2] that the closed convex set of quasssc

Wo(z, h) = clconv QSec(zx, h)

can be used to find a descent direction for the objective wighha> 0. However,
it is not easy to compute the entire $&(x, i), and therefore we use only a few
guasisecants from the set to calculate the descent dinéotiQ SM.

The procedures used in QSM are pretty similar to those in DGitwe
use here the quasisecant(x,g,,h) instead of the discrete gradiemi =
I'(x, g, e,z \ a). Thus, at every iteratioh, we compute the vector

w; = argminweVl(w) HwH27

where Vj(z) is a set of all quasisecants computed so far.|df;|| < ¢ with
a given toleranc& > 0, we accept the point as an approximate stationary

12

point, so-called(h,d)-stationary point [2], and we go to the next outer itera-
tion. Otherwise, we compute another search direcipn = —w,/||w,|| and
we check whether this direction is descent or not. If it is, se¢d,, = g;,,,

v, = w; and stop the direction finding procedure. Otherwise, we adgepn-
other quasisecant,,(z, g,.,, k), update the bundle of quasisecabts, (z) =
conv{Vj(z) U {v;41(x, g,,1,h)}} and continue the direction finding procedure
with [= [+ 1. It has been proved in [2] that the direction finding procedisr
terminating. When the descent directidpn has been found, we need to compute
the next (inner) iteration point similarly to that in DGM.

QSM is globally convergent for locally Lipschitz continuotunctions under
the assumption that the s@fSec(x,) is a SR-quasisecant mapping, that is, qua-
sisecants can be computed using subgradients [2, 3]. Thelpsmde of QSM is
the same as that for DGM (see Section 2.6) when replacingedésgradient,,,
with quasisecants;, (xy,, d., h) and the set of discrete gradientgx,) with
the set of quasisecant§xy,).

3 Numerical Experiments

In this section we compare the implementations of the methlegcribed in the

previous section. First we introduce the solvers and problased, then we say
few words about the parameters and termination conditibtiseocodes and, fi-

nally, we report the numerical results obtained and drawesoomclusions.

3.1 Solvers

The tested optimization codes are presented in Table 1. Aherienents were
performed on an Inté Core" 2 CPU 1.80GHz.

Table 1. Tested pieces of software

Software Author(s) Method Reference
SUBG Karmitsa Subgradient [45]

Sol vOpt Kuntsevich & Kappel Shor’s-algorithm [21, 26, 45]
PBNCGC Makek Proximal bundle [35, 37]
PNEW LukSan & Vicek Bundle-Newton [30]

LVBM Karmitsa Limited memory bundle [17, 18]
DGM Bagirov et al. Discrete Gradient [4]

03]\ Bagirov & Ganjehlou QuasiSecant [2, 3]

SUBG is a crude implementation of the basic subgradient algoritifhe step
length is chosen to be in some extent constant. Let us denotehe largest

13

integer, smaller than or equal 19,,.../c, whereit,,... is the maximum number of
iterations and > 0 is the user-specified maximum number of different step sizes
We taket, = t;,,;; In the firstl iterations and

tj><l

=" fork=7xI1+1,...,(74+1 landj =1,...,c.
100 + 1) Jxl+1,...,(j+1)x j=1,...c

ty,

We use the following three criteria as a stopping ruleSaBG: the number of
function evaluations (and iterations) is restricted byapaeterit,,., and also the
algorithm stops if either it cannot decrease the value ofdibjective function
within m, successive iterations (i.ef (x;) > fiese foralll = k,... .k + my,
where f,..; IS the smallest value of the objective function obtained aoaind
k > 1), or it can not find a descent direction withim, successive iterations (i.e.
f(xy1) > f(a) foralll =k, ... k+ mq, k > 1). Since a subgradient method
is not a descent method we store the best vjue of the objective function and
the corresponding point,..; and return them as a solution if any of the stopping
rule above is met.

SUBGis available for downloading frorttp://napsu.karmitsa.fi/subgra/

Sol vOpt (Solver for local nonlinear optimization problems) is arpiemen-
tation of Shor’'sr-algorithm. The approaches used to handle the difficultiés w
step size selection and termination criteria in Shetadgorithm are heuristic (for
details see [21]).

In Sol vOpt one can select to use either original subgradients or difies
approximations of them (i.e. the user does not have to cdtErelice approxi-
mations but to select one parameter to do this automatithypur experiments
we have used both analytically and numerically calculatdysadients. In what
follows, we denoteSol vOpt A andSol vOpt N, respectively, the corresponding
solvers.

The MatLab, C and Fortran source codes 8l vOpt are available for
downloading fromhttp://www.kfunigraz.ac.at/imawww/kuntsevich/soltbp In
our experiments we usefol vOpt v.1.1 HP-UX FORTRAN-90 sources. To
compile the code, we use or t r an, the GNU Fortran 95 compiler.

PBNCGC is an implementation of the most frequently used bundle otkth
in NSO, that is, the proximal bundle method. The code indutlee con-
straint handling (bound constraints, linear constraiatg] nonlinear/nonsmooth
constraints). The quadratic direction finding problem (8)solved by the
PLQDF1 subroutine implementing dual projected gradient gradmethod pro-
posed in [28].

PBNCGC can be used (free for academic purposes) via WWW-NIMBUS -
system fittp://nimbus.mit.jyu.fiy [38].

14

PNEW is a bundle-Newton solver for unconstrained and linearlgst@ined

NSO. We used the numerical calculation of the Hessian miatoxir experiments
(this can be done automaticly). The quadratic directionifiggoroblem (10) is

solved by the subroutineL QDF1 [28]. PNEWis available for downloading from
http://www.cs.cas.cz/luksan/subroutines.html

LMBM is an implementation of a limited memory bundle method sgiboilevel-
oped for large-scale nonsmooth problems. In our experisne@atused the adap-
tive version of the code with the initial number of storedregtion pairs (used to
form the variable metric update) equal to 7 and the maximumber of stored
correction pairs equal to 15. The Fortran 77 source codelanchex-driver (for
MatLab users) are available for downloading frottp://napsu.karmitsa.fi/lmbm/

DGM is a discrete gradient solver for derivative free optimaat To applyDGM
one only needs to be able to compute at every peitite value of the objective
function and the subgradient will be approximated. The sewode ofDGMis
available on requesti.bagirov@ballarat.edu.au

QSM is a quasisecant solver for nonsmooth possible nonconvexmza-

tion. We have used both analytically calculated subgrdsiand approximated
subgradients in our experiments (this can be done autdmdiic selecting

one parameter). In what follows, we dend@SMA and QSIWN, respectively,
the corresponding solvers. The source code)B8M is available on request:
a.bagirov@ballarat.edu.au

All the algorithms butSol vOpt were implemented in Fortran77 with double-
precision arithmetic. To compile the codes, we ugé&d, the GNU Fortran 77
compiler.

In Table 2 we recall the basic assumptions needed for theisolv

Table 2: Assumptions needed for softwares

Software Assumptions to objective Needed information
SUBG convex f(x), arbitraryé € 9f(x)
Sol vOpt A convex f(x), arbitrary€ € 0f(x)
Sol vOpt N convex f(x)
PBNCGC semi-smooth f(x), arbitrary € 0f (x)
PNEW semi-smooth f(x), arbitrary¢ € 0f(x),
(approximated Hessian)
LVBM semi-smooth f(x), arbitrary¢é € 0f (x)
DGM quasi-differentiable, semi-smoothf (x)
QSMVA quasi-differentiable, semi-smoothf (x), arbitrary¢ € 0f(x)
QSWN quasi-differentiable, semi-smoothf (x)

15

3.2 Problems
We consider ten types of problems:

SC: Small-scale < 20) problems with nonsmooth convex objective function
(Problems 2.1 — 2.7, 2.9, 2.22 and 2.23, and 3.4 — 3.8, 3.10Q, 3.16, 3.19 and
3.20in [33]);

SNC: Small-scale problems with nonsmooth nonconvex objectivection
(Problems 2.8, 2.10 — 2.12, 2.14 — 2.16, 2.18 — 2.21, 2.24 &l 2and 3.1,
3.2,3.15,3.17, 3.18 and 3.25 in [33]);

MC: Medium-scale® = 50) problems with nonsmooth convex objective func-
tion (Problems 1 — 5 in [17], and 2 and 5TEST29 [29] and six maximum of
guadratic functions, see Appendix);

MNC: Medium-scale problems with nonsmooth nonconvex objedtinetion
(Problems 6 —10in[17], and 13, 17 and 2ZTiBST29 [29] and six maximum of
guadratic functions);

LC: Large-scaleif = 200) problems with nonsmooth convex objective function
(see MC problems);

LNC: Large-scale problems with nonsmooth nonconvex objectimetion (see
MNC problems);

XLC: Extra-large-scaler(= 1000) problems with nonsmooth convex objective
function (see MC problems);

XLNC: Extra-large-scale problems with nonsmooth nonconvexabiegfunc-
tion (see MNC problems);

XXLC: Extra-extra-large-scale:(= 4000) problems with nonsmooth convex
objective function (see MC problems but only two maximum oédratics with
diagonal matrix);

XXLNC: Extra-extra-large-scale problems with nonsmooth nonewmbjec-
tive function (see MNC problems but only two maximum of quaihs with diag-
onal matrix).

Problems 2, 5, 13, 17, and 22 TEST29 are from the software package UFO
(Universal Functional Optimization) [29]. They may alsofband in [16]. The
problems were selected such that in all cases all the sateexserged to the same
local minimum. However, it is worth of mention that, in theseaof different
local minima (i.e. in some nonconvex problems omitted fromtest set), solvers
LMBM Sol vOpt , andSUBGusually converged to the same local minimum, while
PBNCGC, DGV andQSMconverged to the different local minimum. SoNRXYEW
converged sometimes with the first group and some other tmtbshe second.

16

Moreover,DGMand QSMseem to have an aptitude for finding global or at least
smaller local minima than the other solvers. For examplg@rablems 3.13 and
3.14 in [33] all the other solvers converged to the minimuporéed in [33] but
DGMandQ@SM“converged” to minus infinity.

3.3 Termination, parameters, and acceptance of the results.

The determination of stopping criteria for different sal/esuch that the compar-
ison of different methods is fair, is not a trivial task.
We say that a solver finds the solution with respect to a totsxa > 0 if

fbest - fopt <

&,
1 + |fopt|

where f...; is a solution obtained with the solver arfg, is the best known (or
optimal) solution.

We fixed the stopping criteria and parameters for the solvsirsy three dif-
ferent problems from three different problem classes: lerob 2.4 in [33] (SC),
3.15in [33] (SNC), and 3 in [17] witm = 50 (MC). With all the solvers we
sought the loosest termination parameters such that thksésr all the three test
problems were still acceptable with respect to the tolezane 10~

In addition to the usual stopping criteria of the solvers, teleninated the
experiments if the elapsed CPU time exceeded half an hour.

We have accepted the results for small- and medium-scalbdgms ¢ < 50)
with respect to the tolerance = 5 - 10~%. With larger problemss(> 200),
we have accepted the results with the tolerance 1073. In what follows, we
report also the results for all problem classes with resjoeitte relaxed tolerance
e = 1072 to have an insight into the reliability of the solvers (i.gaifailure a real
failure or is it just an inaccurate result which could poksite prevented with a
more tight stopping parameter).

With all the bundle based solvers the distance measure pteamalue
~ = 0.5 was used with nonconvex problems. WRBNCGC andLMBMthe value
~ = 0 was used with convex problems and, since VANMEW~ has to be positive,
v = 1071Y was used witlPNEW For those solvers storing subgradients (or ap-
proximations of subgradients) — that RBNCGC, PNEW LMVBM DGM andQSM
— the maximum size of the bundle was setiiin{n + 3,100}. For all other
parameters we used the default settings of the codes.

3.4 Results

The results are summarized in Figures 1 — 13 and in Table 3. r@hdts are
analyzed using the performance profiles introduced in [{¥d.compare the effi-
ciency of the solvers both in terms of computational timesraimbers of function
and subgradient evaluations (evaluations for short). énparformance profiles,

17

the value ofps(7) atT = 0 gives the percentage of test problems for which the cor-
responding solver is the best (it uses least computationaldr evaluations) and
the value ofp,(7) at the rightmost abscissa gives the percentage of testqmsbl
that the corresponding solver can solve. That is, the riét\abf the solver (this
does not depend on the measured performance). Moreoveelétige efficiency

of each solver can be directly seen from the performancelg@sotine higher the
particular curve, the better the corresponding solver. rRore information on
performance profiles, see [14].

3.4.1 Small problems

There was not a big difference in the computational time$efdifferent solvers
when solving the small-scale problems. Thus, only the nusbgfunction and
subgradient evaluations are reported in Figure 1.

1 : : : : : 1 -
—e
091 - I ek
8- t[I * *ok
) *
** E
*ook
— * » —
(=) - () * ' SubG
e ok - G
Q” * 5”:’6 . Q” —e— SolvOptA
ok SolvOptA H —&— SolvoptN
* —a— SolvoptN PENCGC
* —6—PBNCGC . PNEW
Hok PNEW = —A—LMBM -
ek —&— | MBM = DGM =
* DGM - ——QSMA
ok ——QSMA % k" QSMN
* * - QSMN =
6 8 10 12 14 16 0 2 4 6 8 10 12 14
T T
(a) Convex (b) Nonconvex

Figure 1: Evaluations for small problems (20 problems witk 20, = = 5-10~%).

PBNCGC was usually the most efficient solver when comparing the rersbf
function and subgradient evaluations. This is, in facte thor all sizes of prob-
lems. Thus,PBNCGC should be a good choice as a solver in the case, the ob-
jective function value and/or the subgradient are experteicompute. However,
PBNCGCfailed to achieve the desired accuracy in 25% of the smallegaroblems
(both SC and SNC) which means that it had almost the worst degrguccess in
solving these problems.

SUBG is not at all suitable for nonconvex problems: it failed irP6®f the
problems ¢ = 5 - 107, see Figure 1(b)). On the other har@hl vQpt was
one of the most reliable solvers together w@BMin both convex and noncon-
vex settings, although, theoretically, Shorslgorithm is not supposed to solve
nonconvex problemsSol vOpt A was also the most efficient method expect for
PBNCGC (especially in the nonconvex case) and, when comparifBNCCC, it
was more reliable.

18

Except forSUBG, the solvers had not a big difference in the numbers of suc-
cess in solving SC or SNC problems. However, it is notewotttay QSMcom-
puted nonconvex problems more reliable than convex ones.

Most of the failures reported here are, in fact, inaccurasgelts: all the solvers
but PNEWsucceed in solving equal or more that 95% of SC problems w#pect
to the relaxed tolerance= 10~2. The corresponding percentage for SNC prob-
lems was 85%, although here alSOBGfailed to solve such a many problems.

In SC problem$NEWwas the second most efficient solver (see Figure 1(a)).
However, it failed to solve 30% of the convex problems and 8%e nonconvex
problems. The reason for this relatively large number déifas withPNEWIs in
its sensitivity to internal parameter XMAXRPAR(9) in the code) which is noted
also in [32]. If we, instead of only one (default) value, useselected value for
this parameter, also the solMeNEWSsolved 85% of SNC problems.

The derivative free solveldGViand QSMN performed similar in these small-
scale problems bu@QSIMN was clearly more reliable in the nonconvex case.
Sol vOpt N usually used less evaluations than the derivative freeesslidoth
in SC and SNC problems. However, in the nonconvex case Salso Opt N lost
out to QSMNin reliability.

3.4.2 Medium-scale problems

Already with medium-scale problems, there was a wide diyeos the computa-
tional times of different codes. Moreover, the numbers otfion and subgradi-
ent evaluations used with solvers were not anymore direcihgparable with the
elapsed computational times. For instarfeBINCGC was clearly the winner when
comparing the numbers of evaluations (see Figures 2(b) @)y Blowever, when
comparing computational timeSpl vOpt A was equally efficient witiPBNCGC
in MC problems (see Figure 2(a)) aht¥BMwas the most efficient solver in MNC
problems (see Figure 3(a)).

1

091

0.8r

0.7F ¢

p (D)
p (D)

« . SubG

—e— SolvOptA

—8— SolvOpIN

——PBNCGC
PNEW

—&—LMBM
DGM

" ——qsma

* [k QSMN

(a) CPU-time (b) Evaluations

Figure 2: CPU-time and evaluations for MC problems (13 proislevithn = 50,
e=>5-1071%).

19

* . SUbG
—&— SolvOptA
—=— SolvOptN 0.4
—6— PBNCGC *
PNEW 035 ok
—A—LMBM ok
DGM g
| ——QsmA b e
%k QSMN 4 M ke

p (0
p (D)
g

-+
* * SUbG
wh —e— SolvOptA | |
.,'(—&— SolvOptN
—6— PBNCGC ||
PNEW
—A—LMBM |4
ASM
——SecMA [
)))))))))) Kk SecMN
0 2 4 6 8 10 12 0 2 4 6 8 10 12

(a) CPU-time (b) Evaluations

Figure 3: CPU-time and evaluations for MNC problems (14 protd withn =
50, = 5-107%).

SUBG was clearly the worst solver with respect to both computatidimes and
evaluations in both MC and MNC problems. It was also the mostliable solver.
It solved only about 30% of the convex and 20% of the noncopreklems and
it failed in all the quadratic problems.

Also the other subgradient solvBol vOpt had some difficulties with the ac-
curacy, especially, in the nonconvex casel vOpt N solved about 77% of the
convex problems with respect to tolerance: 5 - 10~* and 92% withe = 1072
For Sol vOpt A the corresponding values were 85% and 92%. In the noncon-
vex case, the values were 64% vs. 92% $oi vOpt Nand 71% vs. 86% for
Sol vOpt A. In other wordsSol vOpt would have benefit most if we instead of
tolerance= = 5 - 10~ would have used the relaxed tolerance 10~2 to accept
the results. Note, however that with small-scale probl&wmisvOpt was one of
the most reliable solvers. ThuSpl vOpt solved convex problems much better
than nonconvex with respect to tolerance 5 - 10~ (see Figures 2 and 3).

With the other solvers there was not a big difference in sgiwonvex or
nonconvex problems but witANEW PNEWSsolved about 79% of the nonconvex
problems and only 46% of the convex problems. AlddBMsucceed in solving
little bit more nonconvex than convex problems. In the canvase,PBNCGC,
QSMA and QSIWN succeed to solve all the problems with the desired accuracy.
With the relaxed tolerance= 102 alsoDGVimanaged to solve all the problems
and all the solvers buPNEWand SUBG succeed in solving more than 90% of
the problems. In the nonconvex caBBNCGC and DGV solved all the problems
successfully. With relaxed parame@MA andQSMN succeed as well and all the
solvers buPNEWandSUBG managed to solve more than 85% of the problems.

SolversDGViandQSMN behaved rather similarly b@SMNwas a little bit more
efficient both with respect to computational times and eatams. Sol vOpt N
outperformed these two methods in efficiency but lost cjaarteliability.

PNEWrailed to solve all but one of the convex quadratic problengsucceed
in solving all but one non-quadratic problems. In the nonearcasePNEWsuc-

20

ceed in solving all the quadratic problems but then it hadesdifficulties with
the other problems. Again, the reason for these failures its isensitivity to in-
ternal parameteXMAX. If we, instead of only one (default) valldvAX=1000,
used also the valugMAX=2 for this parameter and select the better reSINEW
solved all the convex quadratic problems (7 pc.) succdgsflihe computations
with XMAX=2 failed only in one problem, whergMAX=1000 succeed. In the
nonconvex case, the solver succeed in solving all quadpatislems with both
parameteXMAX=1000 andXMAX=2. However, withXMAX=2 the number of used
function and subgradient calls was almost fourfold when garad to that used
with parameteiXMAX=1000. The usage of actual Hessian instead of the approxi-
mation helped a little bit in the convex quadratic case. H@awéhe computational
times were enormously longer (when compared to those aataiith XMAX =
2). In the nonconvex case and with larger problems (LC, LNC, XLCNK), the
usage of actual Hessian made the results worse.

In [36], PNEWis reported to be very efficient in quadratic problems. Also i
our experimentsPNEWwas clearly more efficient with the quadratic problems
than with the non-quadratic. However, expect for some spralblems, it was not
in any case the most efficient method.

3.4.3 Large problems

When solving large-scale problems, the solvers divided iwi groups (more
clearly in the convex case, see Figure 4): the first groupistsnef more effi-
cient solvers;LMBM PBNCGC, QSVA, andSol vOpt A. The second group con-
sists of solvers using some kind of approximation for sutigrats or Hessian,
and SUBG. In the nonconvex case (see Figure 6), the inaccuraobivOpt A
made it slide to the group of less efficient solvers. On themotfand, success-
fully solved quadratic problems almost ra88EWto the group of more efficient
solvers (especially, when comparing the numbers of funai@luations, see Fig-
ure 6(b)).

AlthoughPBNCGC was usually (on 70%) the most efficient solver tested in the
convex case (see Figure 4(a)), it was also the one who nelkddoingest time to
compute problem 3 in [17]. Indeed, an average time used t@ $oLC problem
with PBNCGC was 15.7 seconds while withol vOpt A andLNMBMthey were 1.3
and 1.6 seconds, respectively (the average times are a@dulsing 9 problems
that all the solvers above succeed in solving).

In the nonconvex casé,MBM and PBNCGC were the most efficient solvers.
However, withPBNCGC, there was a big variation in the computational times
for different problems while witlLMBM all the problems were solved equally
efficiently.

The efficiency oPBNCGCis mostly due to its efficiency in quadratic problems
(i.e. problem 1 in [17] and six maxqg-problems in the convesecand six maxg-
problems in the nonconvex case, see AppendBNCGC was the most efficient

21

'] ')
0.9 A o9t I [
F ok S ke |
08 - 08 |
A ” "
0 AI — -1 0.7
06 06
£, 08 « swe |1 S,08 % SubG
(=X (=X
—e— SolvOptA —e— SolvOptA
04 —s— SolvOptN || 0.4, —=a— SolvOpiN
—6— PBNCGC —&—PBNCGC
0.3 1 0.3
PNEW PNEW
—&— LMEM —A—LMBM
02 02
. DGM DGM
01 R ——aqsmA || o1 ——QSMA
4 * H QSMN 4 k' QSMN
o " " o ’ ’
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
T T

(a) CPU-time (b) Evaluations

Figure 4. CPU-time and evaluations for LC problems (13 prwislevithn = 200,
e=1073).

1 * *
H 0.9 H
o *
: 08 :
Kok o7 xk
% SubG : :
—e— SolvOptA - 0.6 *
= —=— SolvOptN : = -
o —o— PBNCGC : ~» 05 * SUbG
< PNEW * —e— SolvOptA
—A— LVBM B 0.4 —&— SolvOptN
DGM : —&— PBNCGC
——QSMA +k 0.3 *| PNEW
% QSMN : 02 S| —A—LmBM
: . DGM
- 5 A I
’ % QSMN
0 0
0 2 4 6 8 10 12 0 2 4 6 8 10 12
T T

(a) CPU-time (b) Evaluations

Figure 5: CPU-time and evaluations for LC maxg-problems @bjams with
n = 200, = 1073).

< « SubG « SubG
e —— SolvOptA —e— SolvOptA
—=— SolvoptN —=— SolvOptN |1
—6— PBNCGC —o— PBNCGC
PNEW PNEW H
—A— LMBM —&— LMBM
DGM DGM
——QSMA ——QSMA
% QSMN % QSMN
0 0
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 16
T T

(a) CPU-time (b) Evaluations

Figure 6: CPU-time and evaluations for LNC problems (14 pgoid withn =
200, € = 1073).

22

solver in all but one of these problems when comparing thepcational times
and superior in all cases when comparing the numbers of &vahs. Figure 5
illustrates the performance of the solvers with convex gatéa problems. As
beforePNEWfailed in all but one of these problems.

Besides being usually the most efficieRBNCGC was also the most reliable
solver tested in large-scale settings. In the convex casasgtthe only solver that
succeed in solving all the problems with the desired acguriscthe nonconvex
caseQSMA was successfull as well. With the relaxed toleraace 102 also
Sol vOpt A, QSVA, QSIMN andDGVIimanaged in solving all the convex problems,
while LMBMandSol vOpt N succeed in solving more than 84% of the problems.
In the nonconvex casd,VBM PBNCGC QSMA, QSMN and DGM solved all the
problems with the relaxed tolerance.

Sol vOpt Nhad some serious difficulties with the accuracy: for instamdth
the relaxed toleranc8ol vOpt N solved almost 80% of LNC problems (in Fig-
ure 6 less than 30%). Similar effect could been seen @&ithv Opt A, although
not as pronounced.

Naturally, for the solvers using difference approximatmmsome other ap-
proximation based on the calculation of the function or satiggent values, the
number of evaluations grows enormously when the numberraiblas increases.
However, if you need to solve a problem, where the subgradiamt available,
the best solver would probably Bol vOpt N (only in the convex case) due its
efficiency orQSMN due its reliability.

3.4.4 Extralarge problems

Likewise with large problems, there were two clear groupexina large problems
(see Figures 7 and 8). AgaBNCGC was clearly the most reliable and efficient
solver tested and again the efficiencyRBNCGC is mostly due to its efficiency

in quadratic problems. That is, while being clearly the nefitient method in
almost all quadratic problems, the average time used tolalgmo(including all

the problems that all the solvers below succeed in solviriarthe nonconvex
case ignoring the solv&ol vOpt Awhich solved only 43 % of the problems) was
much larger withPBNCGC (266 sec for the convex and 325 sec for the nonconvex
problems) than that with, for instancelVBM (54.5 and 95.7)QSMA (98.6 and
190.8) orSol vOpt A (22.0 for the convex problems). Indeed, in the convex case,
LMBM was the most efficient solver in all the non-quadratic proidet could
solve. Unfortunatelyl.MBMsucceed in solving only three of them (from six).

In the nonconvex case (see Figure 8), the inaccura®obfvOpt A made it
again slide to the group of less efficient solvers. Figurduitates the results
with the relaxed tolerance = 10~2. As can be seen, heBbl vOpt A is among
more efficient solvers, although its accuracy is not as geatia of the others.

Also LMBM and QSVA had some difficulties with the accuracy in the non-
convex case (see Figure 8). With the relaxed tolerance, gshkyed all XLNC

23

T 1 T T T
* SubG
0.9 09 —e— SolvOptA ||
08 I | 08 | —&— SolvOptN [
: : —&— PBNCGC H
07 |I I 0.7 PNEW |
l —A— LMBM
06 06 beM
PR e ——QSMA
S S
~, 05 * . SubG ~, 05 K QSMN
@ —e— SolvOptA e
0.4, —&— SolvOptN R 0.4, TTRT
—6— PBNCGC H H
0.3 PNEW * 1 o3 *
o —a— LMBM ok 0r x L amm—
4 zzm F : ook :
—_ g
0.1, - q 0.1 1
4 K QSMN @ 4 e
0 0
0 2 4 6 8 10 12 0 2 4 6 8 10 12 14 16
T T

(a) CPU-time

(b) Evaluations

Figure 7: CPU-time and evaluations for XLC problems (13 peats withn

1000, £ = 10793).

% SubG % SubG
—e— SolvOptA | 0.9F N —e— SolvOptA |7
—&— SolvOptN [| 1 'l' —&— SolvOptN [
—6— PBNCGC [054 4 —6—PBNCGC H
PNEW oA PNEW
—A— LMBM : —a— | MBM
DGM 06 DGM
——QSMA —+—QSMA
£ 05 -k QSMN £ 05 & QSMN
(=X a
0.4
03 e
02 H—h—s
*
0.1 J R E
[* * Kk —
o o
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18
T T

(a) CPU-time

Figure 8: CPU-time and evaluations for XLNC problems (14 peots withn =

1000, & = 1073).

(b) Evaluations

T T 1 TS T T T
% SubG T l % SubG
—e— SolvOptA | 091 —e— SolvOptA ||
—&— SolvOptN [] —a— SolvOptN [
—6—PBNCGC [] 08 —6— PBNCGC |
PNEW o PNEW
—A— LMBM : —A— LMBM
DGM 06 DGM
——QSMA : —— QSMA
ke = ke
ook QSMN £, 054 ' QSMN
H Q B
. *k
04 g
[e T B I a i . = *
_I 0.3,
0.2
4
0.1
4 x
0 0
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18
T T

(a) CPU-time

Figure 9: CPU-time and evaluations for XLNC problems, lowuaeacy (14 prob-

lems withn = 1000, ¢ = 1072).
24

(b) Evaluations

problems (see Figure 9). With this tolerarideBMwas clearly the most efficient
solver in non-quadratic problems and the computationadgiof bothL MBMand
QSMA were comparable with those BBNCGC in the whole test set.

SolversPBNCGC, DGVMland @SMwere the only solvers which solved two ex-
tra large problems in which there is only one nonzero elenmetite subgradient
vector (i.e. Problem 1 in [17] and 2 IREST29 [29]). With the other methods,
there were some difficulties already with= 50 and some more with, = 200
(note that for M, L and XL settings, the problems are the samé;, the number
of variables is changing). In the caseld/BMthese difficulties are easy to ex-
plain: the approximation of the Hessian formed during thHewations is dense
and, naturally, not even close to the real Hessian in spaodd@gms. It has been
reported [17] thaLMBMis best suited for the problems with dense subgradient
vector whose component depend on the current iteratiort.pdims result is in
line with the noted result thatMBMsolves nonconvex problems very efficiently.

In the convex cas®NEWSsolved all but the above mentioned two problems
and the maximum of quadratics problems. Soh@&s LVBM SUBG and QSIWN
failed to solve (possible in addition to the two above marg problems) two
piecewise linear problems (Problem 2 in [17] and 5TEBST29 [29]) and also
QSMA failed to solve one of them.

In all the maximum of quadratics problems, the time limit veaseeded with
all the solvers using some kind of approximation for subgnais or Hessian.
Thus, the number of failures with these solvers is probadgdr than it should
be.

3.4.5 Extra extra large problems

Finally we tested the most efficient solvers so far, thatiN8M PBNCGC, QSVA
andSol vOpt A, with the problems wit. = 4000.

In the convex case, the solv€@EMA, which has kept rather low profile until
now, was clearly the most efficient method altholRBNCGC still used the least
evaluationsQSMA was also the most reliable of the solvers tested (see Figlre 1

LMBMsolved all the problems it could solve in a relatively sharte while
with all the other solvers there were a wide variation in tbmputational times
elapsed for different problems. However, in the convex c#se efficiency of
LMBMwas again ruined by its unreliability.

In the nonconvex caseMBMand QSVA were approximately as good both in
computational times, evaluations and reliability (seeufegll). Here®PBNCGC
was the most reliable solver, although with the toleranee10~2 QSMA was the
only solver that solved all the nonconvex problemaBMandPBNCGC failed in
one andSol vOpt in two problems.

25

o =)
> ~
s
€ o o <
> ~
—
—

p (0
p (1)

o —— SolvoptA || 0.2 ——SolvoptA ||
—6—PBNCGC —&—PBNCGC
018 —A—LMBM || 0.14 —A—LMBM
——QSMA

(a) CPU-time (b) Evaluations

Figure 10: CPU-time and evaluations for XXLC problems (9 jeols withn =
4000, ¢ = 1073).

1 T T T T T T T 1

T T T T T T T T
091 Ti 0.9 Iﬁ
0.8F 4 L A

08

0.7 4 I—’—li
0. 1

0.5¢ |
|

0.30—'
—— SolvOptA || 0.24 —— SolvOptA ||
—&— PBNCGC —6— PBNCGC

—a—LvBM 0. —A—LVMBM |
—— QSMA ——QSMA

0.71

0.6r

p (D)

051

p (D)

0.44

0.34%

0 2 4 6 8 10 12 14 0 1 2 3 4 5 6 7 8
T T

(a) CPU-time (b) Evaluations

Figure 11: CPU-time and evaluations for XXLNC problems (16kpems with
n = 4000, ¢ = 1073).

3.4.6 Convergence speed and number of success

In this subsection we first study (experimentally) the cogeace speed of the
algorithms using one medium-scale convex problem (Prot8em [17]). The
exact minimum value for this function (with = 50) is —49 - 2'/2 ~ —69.296.

For the limited memory bundle method the rate of convergérasenot been
studied theoretically. However, at least in this particydeoblem, solverd MBM
and PBNCGC converged at approximately the same rate. Moreover, if weyst
the number of evaluatioBNCGC andLMBMseem to have the fastest converge
speed of the solvers tested (see Figure 12(b)), althoughetteally, proximal
bundle method is only linearly convergent.

SUBG converged linearly but very, very slowly arRNEW although finally
found the minimum, did not decrease the value of the funatid®00 first evalua-
tions. Naturally, withPNEWa large amount of subgradient evaluations are needed
to compute the approximative Hessian. Solv@&o$ vOpt A, Sol vOpt N, DGV

26

R T x Ao -~

» 1 SUG E Tl [subG
4or —+— SolvOptA 4or E —e— SOlVOptA
~—&— SolvOptN E —8— SolvOptN
=4~ PBNCGC 3 =4~ PBNCGC
“r PNEW 2y E PNEW
—he— LMBM : —h— LMBM

DGM DGM
—+— QSMA 3 s QSMA
ok QSMN k' QSMN

f(x)
f(x)

-20F 1 -20F

—40F

-60 3 ‘;—ﬂ

2 4 6

8 10 12 16 18 20 0 20 40 60 80 100 120 140 160 180 200
Number of iterations Number of evaluations

(a) First 20 iterations (b) First 200 evaluations

Figure 12: Function values versus iterations (a), and fanatalues versus num-
ber of function and subgradient evaluations (b).

QSMA, and QSIWN took a very big step downwards already in iteration two (see
Figure 12(a)). However, they took quite many function estibns per iteration.
In Figure 12 it is easy to see that Sharslgorithm (i.e. solver$ol vOpt A and
Sol vOpt N) is not a descent method.

In order to see how quickly the solvers reach some specifed,lewe studied
the value of the function equal te69. With PBNCGC it took only 8 iterations
to go below that level. The corresponding values for othéress were 17 with
QSVA and QSIWN, 20 with LMBMandPNEW and more than 20 with all the other
solvers. In terms of function and subgradient evaluatibes/alues were 18 with
PBNCGC, 64 with LMBMand 133 withSol vOpt A. Other solvers needed more
than 200 evaluations to go below69.

The worst of the solvers werf@UBG, which took 7382 iterations and 14764
evaluations to reach the desired accuracy and stopSahdOpt N, which never
reached the desired accuracy (the final value obtained4#ftierations and 2342
evaluations was-68.915).

Finally, in Figure 13 we give the proportions of the succlgfterminated
runs obtained with each solver within the different probldasses. Although we
have already said something about the reliability of theexs|, we study Figure
13 to see if the convexity or the number of variables have amjif&cant effect on
the success rate of the solvers.

In the figure, we see that with both variantsSdl vOpt the degree of suc-
cess decrease clearly when the number of variables incr@agbe problem is
nonconvex. In addition, with the solvers that use approiona to subgradient
or Hessian there is a clear drop-out when moving from 20Gisées to 1000 vari-
ables. At least one reason for this is that with= 1000 the solvers terminated
because of the maximum time limit (thus failing to reach thesiged accuracy).

DGVandQSIMN were reliable methods both with convex and nonconvex prob-
lems up to 200 variables, whilevBMandPNEWSsolved the nonconvex problems
more reliably than the convex ones. WRBINEWthe maximum time limit was

27

P Il suc P Il subG

§ [l soivopa § Il soivopta

3 @l solopn | 3 [solvoptN
[Jrencee [_IreNCae
[Cpnew [IPNEW
[Jimem [Jimem
[ocm Iocm
Il osvA Bl Qsva
Il QsvN Il QsviN

sc MC Lc XLC XxLC SNC MNC LNC _ XLNC _XXLNC
Problem class Problem class
(a) Convex (b) Nonconvex

Figure 13: Proportions of successfully terminated run$iwitifferent problem
classes: convex problems (a), and nonconvex problems (b).

exceeded in many cases with= 1000, thus the exception. WitRNEWthe re-
sult could be different if tuned parame®kAX was used. With.MBMthe result
is in harmony with the earlier claims [16, 17] thavBMworks better for more
nonlinear functions.

PBNCGC solved medium-scale and larger problems in a very relialalg but
it was almost the worst solver in small-scale problems. Téssilt has probably
nothing to do with the problem’s size but more with the diéfier problem classes
used.

4 Conclusions

We have tested the performance of different nonsmooth agiion solvers in the
solution of different nonsmooth problems. The results areraarized in Table 3,
where we give our recommendations for the “best” solver flieent problem
classes. Since it is not always unambiguous what is the Wwedgjve credentials
both in the cases when the most efficient (in terms of used atenpme) and the
most reliable solver are sought out. If there is more thansohesr recommended
in Table 3, the solvers are given in the alphabetical ordbe garenthesis in the
table mean that the solver is not exactly as good as the fiesbonstill a solver
to be reckoned with the problem class.

Although, in our experiments we got extremely good resulth whe prox-
imal bundle solvelPBNCGC, we can not say that it is clearly the best method
tested. The inaccuracy in small-scale problems, greaatianss in the computa-
tional times occurred in larger problems and the earlienlte®btained make us
believe that our test set favored this solver over the othditsle bit. Even so,
we can say thaPBNCGC was one of the best solvers tested and it is especially
efficient for the maximum of quadratics and piecewise liq@ablems.

28

62

Table 3: Summation of the results

Problem’s type Problem’s size Seeking for Efficiency Seeking for Reliability
Convex S PBNCGC, PNEWY), (Sol vOpt (A+N)) DGM Sol vOpt (A+N)

M, L, XL LVBM2), PBNCGC, (QSMA, Sol vOpt A) PBNCGC, QSVA

XXL LVMBM2), GSMVA QSMA, (PBNCGC)
Nonconvex S PBNCCC, Sol vOpt A, (QGSMR) SM A+N) , (Sol vOpt A)

M, L, XL L VBM PBNCGC, (QSVA) DGV] LMBM PBNCGC

XXL LVBM QSVA PBNCGC, (LMBM QSVA)
Piecewise linear S, M PBNCCC, Sol vOpt A PBNCCC, Sol vOpt A
or sparse L, XL, XXL PBNCGC, QSMA®G) DGV PBNCGC, QSVA

Piecewise quadratic S
M, L, XL, XXL

Highly nonlinear S
M
L, XL, XXL

Function evaluations S
are expensive M, L, XL, XXL

Subgradients are not S
available M, L
XL

PBNCGC, PNEW"), (LMBM Sol vOpt A)
LMBM PBNCGC, (Sol vOpt A)

LMBM PBNCGC, Sol vOpt A
LMBM PBNCGC
LMVMBM

PBNCGC, (PNEW"), Sol vOpt A)
PBNCGC, (LMBM%), Sol vOpt A)

Sol vOpt N
Sol vOpt N, QSWN

QBWN, (DG

LVBM PBNCGC, PNEW"), Sol vOpt A
DGM LMVBM PBNCGC, QSVA

LVBM QSMA, Sol vOpt A
LMBM PBNCGC, QGSVA
LVBM QSMVA

QSMA, Sol vOpt A
PBNCGC, (LMBM®), QSMA)

QSMWN, Sol vOpt N©®), (DGW)
DGM QSN
DGM QSN

(1) PNEWmay require tuning of internal parameddviAX.

QSMA in other sparse problems. (BMBMespecially in the nonconvex case.

(2) LMBM if not a piecewise linear or sparse problem. RPBNCGCin piecewise linear problems,

@M especially in the nonconvex caggl vOpt Nonly in the convex case.

On the other hand, the limited memory bundle solu&BM suffered from ill-
fitting test problems in convex M, L, XL and XXL cases. In thettset there
were 4 problems (out of 13) in whichMBMwas known to have difficulties. In
addition, LMBMdid not beatPBNCGC in any maximum of quadratics problems
but in one withn = 4000. This, however, is not the inferiority df MBM but
rather the superiority oPBNCGC in these kinds of problemsLMBMwas quite
reliable in the nonconvex case in all numbers of variablegeteand it solved
all the problems — even the largest ones — in relatively stior¢ while, for
example, withPBNCGC there were a great variation on the computational times
of different problemsLMBMworks best for (highly) nonlinear functions while for
piecewise linear functions it might be a good idea to find heosolver.

In convex small-scale problems the bundle-Newton sdhdEWwas the sec-
ond most efficient solver tested. HoweVeNEWsuffers very badly from the fact
that it is very sensitive to the internal paramex®A\X. Already using two values
for this parameter (e.g. default value 1000 and the smakestmmended value
2) the results would have been much better and especiallgggeee of success
would have been much higher. The solver has been reportesitiedi suited for
guadratic problems [36] and, indeed, it solved (nonconegigdratic problems
faster that non-quadratic. However, with> 50 it did not beat the other solvers
in these problems due to large approximation of the Hessetnxrequired.

The standard subgradient soN&UBG is usable only for small-scale convex
problems: the degree of success was 80% in SC, otherwise liégsthan 40%. In
addition, the implementations of Shor'salgorithmSol vOpt A andSol vOpt N
did their best in small-scale problems (also in the noncocase!). Nevertheless,
Sol vOpt Asolved also L, XL and even XXL problems (convex) rather eéfntly.

In larger nonconvex problems these methods suffered fragcuracy.

Thus, when comparing the reliability in large-scale sgtirit seems that one
should selecPBNCGC for convex problems whilé. MBMis good for nonconvex
problems. On the other hand, the quasi-secant sQ8&#A was reliable and ef-
ficient both in convex and nonconvex large problems. Howevith QSVA there
were a some variation on the computational times of diffepeablems (not as
much asPBNCGC, though) whileLMBM solved all the problems in a relatively
short time.

The solvers using discrete gradients, that is the discretéient solveiDGM
and quasisecant solver with discrete gradi€8&N, usually lost out in efficiency
to the solvers using analytical subgradients. Howevemnalsand medium-scale
problems the differences were not significant and the riéitiabf DGViandQSMN
seems to be very good both with convex and nonconvex probldvtareover
in the case of highly nonconvex functions (supposing that geek for global
optimum) DGM or QSM (either with or without subgradients) would be a good
choice, since these methods tend to jump over the narrowrnadoana.

To answer the question asked in the Introduction, the bégerstor a non-
convex nonsmooth problem with 200 variables is the limiteehmary bundle

30

method. But that is only if we knew nothing else about the dbjec If we,

for instance, knew that the objective has sparse subgitagietor or it is a max-
imum of quadratics problem the best solver would probablyfeximal bundle
method. On the other hand, if we are unable to identify subgrd vector, either
Shor’sr-algorithm with finite difference approximations or, sinoesome nons-
mooth cases finite differences may cause serious misietatpn [27], discrete
gradient method or secant method with discrete gradientdise a good choice.

Acknowledgements

We would like to acknowledge professors Kuntsevich and keapqr providing
Shor’sr-algorithm in their web-page as well as professors3arkand ek for
providing the bundle-Newton algorithm.

The work was financially supported by the University of Tu(kinland) and
the University of Ballarat (Australia).

Appendix

Maximum of quadratics. Maximum of quadratic functions are defined as the
point-wise maximum of a finite collection of quadratics ftions. That is

1
f(x) = max{f;(x) = ECBTAJ-ZB + b]Taz +ci|j=1,...,ns},

where A; aren x n symmetric matrices (in the convex case positive definite),
b; € R™ andc; € R. With this definition, many different examples are easilg-cr
ated by choosing the values of ny, and the sparsity parameter< p, < 1

(ps = 0 causes the diagonal matrix, = 1 causes the dense matrix, and
0 < ps < 1 causes the sparse matrix with approximately? + n nonzeros)
and then randomly generating objectsA;, b; andc;. Depending on the positive
definiteness of matriced; both convex and nonconvex problems can be created
(for more details of the procedure see the following algonit. In our experi-
ments, we used 6 different combinations of the valugsandp, to create both
convex and nonconvex problems. The values used were= 5 and 10, and

ps = 0,0.6 and1. The numbers of variables used were- 50, 200 and1000.

In the following algorithm some more details of the data gatien are given:

31

PROGRAM Create Data for Maxi num of Quadratics

INITIALIZE Sel ect a | ower and upper bound for random
nunmber generator L,U c€R. Fix the dinmension n, the
nunber of elenental functions n; and the sparsity
paraneter p, (0<ps<1). Set is,,=1, if a convex
probl emis needed and i., =0, otherw se;

IF 4eon =0 THEN
Set ¢; =L and randonly generate c¢; € (L,U) for

J=2,...,ny
ELSE
Randomy generate c¢; e (L,U) for j=1,...,ng
END IF
FORALL j=1,...,ny randomy generate vectors b; € (L,U)";
FORALL j=1,...,ny randomy generate symetric matrices

Aj e (L,U)"™™ such that there exist approximtely
psn?+n nonzero entries and all the diagonal elenents
are nonzero.
IF 4eon =1 THEN
Add the identity matrix nultiplied by one plus the
absol ute val ue of the snall est eigenvalue to each
matrix A; to obtain positive definite matrices;
ELSE
Add the identity matrix nultiplied by one plus the
absol ute value of the snallest eigenvalue to the
first matrix A;. Oherwi se, check that the m ni nrum
ei genval ue is negative for each matrix A; (with

j=2,...,nf7). Regenerate any A; whose eigenvalue is
non- negati ve;
END IF

Random y generate the starting point x; € (L,U)™
END Create Data for Maxi num of Quadratics

Note: In the nonconvex case we enforce the first elementatifumto be convex
(i.e. the matrixA; to be positive definite) in order to obtain finite results. sThi
does not restrict the overall nonconvexity of the probless(aing:, > 1) since
atx = 0 all the nonconvex elemental functions have a larger valae the convex

one.

The MatLab-filemakepr obl em mfor generating the random data as well
as the Fortran subroutineaxq. f that reads the data-file and calculates the
value of the function and subgradient are available for doaging from

http://napsu.karmitsa.fi/testproblems/

32

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

AYRAMO, S.Knowledge Mining Using Robust Clustering. PhD thesis, Uni-
versity of Jy\askyh, Department of Mathematical Information Technology,
2006.

BAGIROV, A. M., AND GANJEHLOU, A. N. A quasisecant method for
minimizing nonsmooth functionsOptimization Methods and Software 25,
1 (2009), 3-18.

BAGIROV, A. M., AND GANJEHLOU, A. N. A secant method for nons-
mooth optimization. Submitted, 2009.

BAGIROV, A. M., KARASOZEN, B., AND SEZER, M. Discrete gradient
method: A derivative free method for nonsmooth optimizatidournal of
Optimization Theory and Applications 137 (2008), 317—334.

BECK, A., AND TEBOULLE, M. Mirror descent and nonlinear projected
subgradient methods for convex optimizatiddperations Research Letters
31, 3(2003), 167-175.

BEN-TAL, A., AND NEMIROVSKI, A. Non-Euclidean restricted memory
level method for large-scale convex optimizatiaiathematical Program-
ming 102, 3 (2005), 407-456.

BIHAIN, A. Optimization of upper semidifferentiable functiordaurnal of
Optimization Theory and Applications 4 (1984), 545-568.

BRADLEY, P. S., AYYAD, U. M., AND MANGASARIAN, O. L. Mathemat-
ical programming for data mining: Formulations and chakesnINFORMS
Journal on Computing 11 (1999), 217-238.

BURKE, J. V., LEwIs, A. S., AND OVERTON, M. L. A robust gradient
sampling algorithm for nonsmooth, nonconvex optimizatiSiiAM Jour nal
on Optimization 15 (2005), 751-779.

BYRD, R. H., NOCEDAL, J.,AND SCHNABEL, R. B. Representations of
guasi-Newton matrices and their use in limited memory méshdlathe-
matical Programming 63 (1994), 129-156.

CLARKE, F. H. Optimization and Nonsmooth Analysis. Wiley-Interscience,
New York, 1983.

CLARKE, F. H., LEDYAEV, Y. S., STERN, R. J.,AND WOLENSKI, P. R.
Nonsmooth Analysis and Control Theory. Springer, New York, 1998.

33

[13] DEMYANOV, V. F., BAGIROV, A. M., AND RUBINOV, A. M. A method of
truncated codifferential with application to some probdeof cluster analy-
sis. Journal of Global Optimization 23, 1 (2002), 63—80.

[14] DoLAN, E. D.,AND MORE, J. J. Benchmarking optimization software with
performance profilesviathematical Programming 91 (2002), 201-213.

[15] GAuDlOosO, M., AND MONACO, M. F. Variants to the cutting plane ap-
proach for convex nondifferentiable optimizatio®ptimization 25 (1992),
65-75.

[16] HAARALA, M. Large-Scale Nonsmooth Optimization: Variable Metric
Bundle Method with Limited Memory. PhD thesis, University of Jyaskyh,
Department of Mathematical Information Technology, 2004.

[17] HAARALA, M., MIETTINEN, K., AND MAKELA, M. M. New limited
memory bundle method for large-scale nonsmooth optinaratdptimiza-
tion Methods and Software 19, 6 (2004), 673—-692.

[18] HAARALA, N., MIETTINEN, K., AND MAKELA, M. M. Globally conver-
gent limited memory bundle method for large-scale nonsmoptimization.
Mathematical Programming 109, 1 (2007), 181-205.

[19] HASLINGER, J.,AND NEITTAANM AKI, P. Finite Element Approximation
for Optimal Shape, Material and Topology Design, 2nd ed. John Wiley &
Sons, Chichester, 1996.

[20] HIRIART-URRUTY, J.-B., AND LEMARECHAL, C. Convex Analysis and
Minimization Algorithms 1. Springer-Verlag, Berlin, 1993.

[21] KAPPEL, F., AND KUNTSEVICH, A. An implementation of Shor’s-
algorithm. Computational Optimization and Applications 15 (2000), 193—
205.

[22] KARKKAINEN, T., AND HEIKKOLA, E. Robust formulations for training
multilayer perceptrondNeural Computation 16 (2004), 837—-862.

[23] KARMITSA, N., MAKELA, M. M., AND ALI, M. M. Limited memory in-
terior point bundle method for large inequality constraimensmooth min-
imization. Applied Mathematics and Computation 198, 1 (2008), 382—400.

[24] KiwiEL, K. C. Methods of Descent for Nondifferentiable Optimization.
Lecture Notes in Mathematics 1133. Springer-Verlag, Bell#85.

[25] KIwiEL, K. C. Proximity control in bundle methods for convex noifelif
entiable minimizationMathematical Programming 46 (1990), 105-122.

34

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

KUNTSEVICH, A., AND KAPPEL, F. SolvOpt — the solver for local nonlin-
ear optimization problems. Karl-Franzens University cagrGraz, Austria,
1997.

LEMARECHAL, C. Nondifferentiable optimization. I@ptimization, G. L.
Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, Eds. ElsevitiN
Holland, Inc., New York, 1989, pp. 529-572.

LUKSAN, L. Dual method for solving a special problem of quadratic-pr
gramming as a subproblem at linearly constrained nonlin@amax ap-
proximation.Kybernetika 20 (1984), 445-457.

LUK3AN, L., TUMA, M., SISKA, M., VLEEK, J., AND RAMESOVA, N.
UFO 2002. Interactive system for universal functional mytiation. Techni-
cal Report 883, Institute of Computer Science, Academy ofrigeie of the
Czech Republic, Prague, 2002.

LUKSAN, L., AND VLCEK, J. A bundle-Newton method for nonsmooth
unconstrained minimizationMathematical Programming 83 (1998), 373—
391.

LUKSAN, L., AND VLCEK, J. Globally convergent variable metric method
for convex nonsmooth unconstrained minimizatidournal of Optimization
Theory and Applications 102, 3 (1999), 593-613.

LUKSAN, L., AND VLCEK, J. NDA: Algorithms for nondifferentiable op-
timization. Technical Report 797, Institute of Computer 8ces Academy
of Sciences of the Czech Republic, Prague, 2000.

LUKSAN, L., AND VLCEK, J. Test problems for nonsmooth unconstrained
and linearly constrained optimization. Technical Repo®,7®@stitute of
Computer Science, Academy of Sciences of the Czech Republigu@r
2000.

MAKELA, M. M. Survey of bundle methods for nonsmooth optimization.
Optimization Methods and Software 17, 1 (2002), 1-29.

MAKELA, M. M. Multiobjective proximal bundle method for nonconvex
nonsmooth optimization: Fortran subroutine MPBNGC 2.0. Rispaf the
Department of Mathematical Information Technology, Sele Scientific
Computing, B. 13/2003 University of Jggkyh, Jy\askyh, 2003.

MAKELA, M. M., MIETTINEN, M., LUKSAN, L., AND VLCEK, J. Com-
paring nonsmooth nonconvex bundle methods in solving hemmaitional in-
equalities.Journal of Global Optimization 14 (1999), 117-135.

35

[37] MAKELA, M. M., AND NEITTAANMAKI, P. Nonsmooth Optimization:
Analysis and Algorithms with Applications to Optimal Control. World Sci-
entific Publishing Co., Singapore, 1992.

[38] MIETTINEN, K., AND MAKELA, M. M. Synchronous approach in interac-
tive multiobjective optimizationEuropean Journal of Operational Research
170, 3 (2006), 909-922.

[39] MISTAKIDIS, E. S.,AND STAVROULAKIS, G. E. Nonconvex Optimization
in Mechanics. Smooth and Nonsmooth Algorithms, Heuristics and Engineer-
ing Applications by the FE.M. Kluwert Academic Publishers, Dordrecht,
1998.

[40] MOREAU, J. J., RNAGIOTOPOULOS P. D.,AND STRANG, G., Eds.Topics
in Nonsmooth Mechanics. Birkhauser Verlag, Basel, 1988.

[41] OUTRATA, J., KOCVARA, M., AND ZOWE, J. Nonsmooth Approach to
Optimization Problems With Equilibrium Constraints. Theory, Applications
and Numerical Results. Kluwert Academic Publisher, Dordrecht, 1998.

[42] RoBINSON, S. M. Linear convergence of epsilon-subgradient descetttm
ods for a class of convex functionslathematical Programming 86 (1999),
41-50.

[43] SAGASTIZABAL, C.,AND SoLoDOV, M. An infeasible bundle method for
nonsmooth convex constrained optimization without a ggriahction or a
filter. SAM Journal on Optimization 16, 1 (2005), 146—-169.

[44] SCHRAMM, H., AND ZOWE, J. A version of the bundle idea for minimizing
a nonsmooth function: Conceptual idea, convergence asalggmerical
results.SAM Journal on Optimization 2, 1 (1992), 121-152.

[45] SHOR, N. Z. Minimization Methods for Non-Differentiable Functions.
Springer-Verlag, Berlin, 1985.

[46] URYASEV, S. P. Algorithms for nondifferentiable optimization pleims.
Journal of Optimization Theory and Applications 71 (1991), 359-388.

[47] VLCEK, J.,AND LUKSAN, L. Globally convergent variable metric method
for nonconvex nondifferentiable unconstrained minimaatJournal of Op-
timization Theory and Applications 111, 2 (2001), 407—430.

36

TURKU

CENTRE for

COMPUTER

SCIENCE

Lemminkaisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

\\ ?A ,/ University of Turku
$ _4 e Department of Information Technology
S\LIS j
— N e Department of Mathematics
2 1y
O

Abo Akademi University
e Department of Computer Science
e Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
e Institute of Information Systems Sciences

ISBN 978-952-12-2367-9
ISSN 1239-1891

