
Napsu Karmitsa | Adil Bagirov | Marko M. Mäkelä

Empirical and Theoretical Comparisons of
Several Nonsmooth Minimization Methods
and Software

TUCS Technical Report
No 959, October 2009

Empirical and Theoretical Comparisons of
Several Nonsmooth Minimization Methods
and Software

Napsu Karmitsa
Department of Mathematics
University of Turku
FI-20014 Turku, Finland
napsu@karmitsa.fi

Adil Bagirov
Centre for Informatics and Applied Optimization
School of Information Technology and Mathematical Sciences
University of Ballarat
University Drive, Mount Helen, PO Box 663
Ballarat, VIC 3353, Australia.
a.bagirov@ballarat.edu.au

Marko M. Mäkelä
Department of Mathematics
University of Turku
FI-20014 Turku, Finland
makela@utu.fi

TUCS Technical Report

No 959, October 2009

Abstract

The most of nonsmooth optimization methods may be divided intwo main groups:
subgradient methods and bundle methods. Usually, when developing new algo-
rithms and testing them, the comparison is made between similar kinds of meth-
ods. In this report we test and compare both different bundlemethods and dif-
ferent subgradient methods as well as some methods which maybe considered as
hybrids of these two and/or some others. All the solvers tested are so-called gen-
eral black box methods which, at least in theory, can be used to solve almost all
kinds of problems. The test set included large amount of different unconstrained
nonsmooth minimization problems. That is, for instance, convex and nonconvex
problems, piecewise linear and quadratic problems and problems with different
sizes. The aim of this work is not to foreground some method over the others but
to get some kind of insight which kind of method to select for certain types of
problems.

Keywords: Nondifferentiable programming, bundle methods, subgradient meth-
ods, numerical performance.

TUCS Laboratory
Applied Mathematics

1 Introduction

We compare different nonsmooth optimization (NSO) methodsfor solving uncon-
strained optimization problems of the form

{

minimize f(x)

such that x ∈ R
n,

(P)

where the objective functionf : R
n → R is supposed to be locally Lipschitz

continuous. Note that no differentiability or convexity assumptions are made.
Problems of type (P) are encountered in many application areas: for instance,

in economics [41], mechanics [40], engineering [39], control theory [12], optimal
shape design [19], data mining [1, 8] and in particular cluster analysis [13], and
machine learning [22].

The most of methods for solving these problems may be dividedin two main
groups: subgradient (see e.g. [5, 6, 45, 46]) and bundle methods (see e.g. [15, 20,
24, 31, 34, 37, 43, 44]). Both of these methods have their own supporters. Usually,
when developing new methods and doing some numerical experiments with them,
the researchers compare the new method with similar kinds ofmethods. That is,
bundle methods are compared with bundle methods and subgradient methods are
compared with other subgradient methods. Moreover, it is quite common that
the test set used is rather concise (sometimes only a couple of problems), which
naturally does not give a good impression of how the algorithm would perform in
different kinds of problems.

In this report we compare both different subgradient methods and different
bundle methods, as well as some methods that lie between these two. Moreover,
we use a broad test settings including different classes of nonsmooth problems.
The methods included in our tests are the following:

• Subgradient methods:

– standard subgradient method [45],
– Shor’sr-algorithm [21, 26, 45],

• Bundle methods:

– proximal bundle method [37],
– bundle-Newton method [30],

• Hybrid methods:

– limited memory bundle method [17, 18],
– discrete gradient method [4] and
– quasi-secant method [2, 3].

All the solvers tested are so-called general black box methods and, naturally, can
not beat the codes designed specially for a particular classof problems (say e.g. for

1

piecewise linear, min-max, or partially separable problems). However, rather than
seeing this generality as a weakness, it should be seen as a strength due to the min-
imal information of the objective function required for thecalculations. Namely,
the value of the objective function and, possible, one arbitrary subgradient (gen-
eralized gradient [11]) at each point.

The aim of our research is not to foreground some method over the others — it
is a well known fact that different methods work well for different types of prob-
lems and none of them is good for all types of problems — but to get some kind
of insight which kind of method to select for certain types ofproblems. Suppose,
for instance, that you want to minimize a problem known to be nonconvex and
nonsmooth with 200 variables. In this work, we are going to analyze which is the
best method to use.

The report is organized as follows. Section 2 introduces theNSO methods
tested and compared. The results of the numerical experiments are presented and
discussed in Section 3 and Section 4 concludes the report andgives our credentials
for good-performing algorithms for different problem classes.

In what follows we denote by‖·‖ the Euclidean norm inRn and byaT b the
inner product of vectorsa and b (bolded symbols are used for vectors). The
subdifferential ∂f(x) [11] of a locally Lipschitz continuous functionf : R

n → R

at any pointx ∈ R
n is given by

∂f(x) = conv{ lim
i→∞

∇f(xi) | xi → x and∇f(xi) exists},

where “conv” denotes the convex hull of a set. Each vectorξ ∈ ∂f(x) is called
a subgradient. The pointx∗ ∈ R

n is calledsubstationary if 000 ∈ ∂f(x∗). Substa-
tionarity is a necessary condition for local optimality and, in the convex case, it is
also sufficient for global optimality.

2 Methods

In this section we give short descriptions of the methods to be compared. The
implementational details are given in Section 3 and in the references. In what
follows (if not stated otherwise), we assume that at every point x we can evaluate
the value of the objective functionf(x) and an arbitrary subgradientξ from the
subdifferential∂f(x).

2.1 Standard Subgradient Method

The first method to be considered here is the cornerstone of NSO: standard sub-
gradient method [45].

The idea behind subgradient methods (Kiev methods) is to generalize smooth
methods (e.g. steepest descent method) by replacing the gradient with an arbitrary

2

subgradient. Therefore, the iteration formula for these methods is

xk+1 = xk − tk
ξk

‖ξk‖
,

whereξk ∈ ∂f(xk) is any subgradient andtk > 0 is a predetermined step size.
Due to this simple structure and low storage requirements, subgradient meth-

ods are widely used methods in NSO. However, basic subgradient methods suffer
from some serious disadvantages: a nondescent search direction may occur and
thus, the selection of step size is difficult; there exists noimplementable subgradi-
ent based stopping criterion; and the convergence speed is poor (not even linear)
(see e.g. [27]).

The standard subgradient method is proved to be globally convergent if the
objective function is convex and step sizes satisfy

lim
k→∞

tk = 0 and
∞

∑

j=1

tj = ∞.

An extensive overview of various subgradient methods can befound in [45].

2.2 Shor’sr-algorithm (Space Dilation Method)

Next we shortly describe the ideas of more sophisticated subgradient method, the
well-known, Shor’sr-algorithm with space dilations along the difference of two
successive subgradients. The basic idea of Shor’sr-algorithm is to interpolate
between steepest descent and conjugate gradient method.

Let f be a convex function onRn. Shor’sr-algorithm is given as follows:

PROGRAM Shor’s r-algorithm
INITIALIZE x0 ∈ R

n, β ∈ (0, 1) , B1 = I, and t1 > 0;
Compute ξ0 ∈ ∂f(x0) and x1 = x0 − t1ξ0;
Set ξ̄1 = ξ0 and k = 1;
WHILE the termination condition is not met
Compute ξk ∈ ∂f(xk) and ξ∗k = BT

k ξk;
Calculate rk = ξ∗k − ξ̄k and sk = rk/‖rk‖;
Compute Bk+1 = BkRβ(sk), where Rβ(sk) = I + (β − 1)sks

T
k

is the space dilation matrix;
Calculate ξ̄k+1 = BT

k+1ξk;
Choose a step size tk+1;
Set xk+1 = xk − tkBk+1ξ̄k+1 and k = k + 1;

END WHILE

RETURN final solution xk;
END Shor’s r-algorithm

In order to turn the abover-algorithm into an efficient optimization routine, one
has to find a solution to the following problems: how to choosethe step sizestk

3

(including the initial step sizet1) and how to design a stopping criterion which
does not need information on subgradients.

If the objective function is twice continuously differentiable, its Hessian is
Lipschitz, and the starting point is chosen from some neighborhood of the opti-
mal solution, then then-step quadratic rate convergence can be proved for Shor’s
r-algorithm [45]. In the nonconvex case, if the objective function is coercive un-
der some additional assumptions, ther-algorithm is convergent to isolated local
minimizers [45].

2.3 Proximal Bundle Method (PBM)

In this subsection we describe the ideas of the proximal bundle method (PBM)
for nonsmooth and nonconvex minimization. For more detailswe refer to [25],
[37] and [44].

The basic idea of bundle methods is to approximate the whole subdifferential
of the objective function instead of using only one arbitrary subgradient at each
point. In practice, this is done by gathering subgradients from the previous itera-
tions into a bundle. Suppose that at thek-th iteration of the algorithm we have the
current iteration pointxk and some trial pointsyj ∈ R

n (from past iterations) and
subgradientsξj ∈ ∂f(yj) for j ∈ Jk, where the index setJk is a nonempty subset
of {1, . . . , k}.

The idea behind PBM is to approximate the objective functionf below by a
piecewise linear function, that is,f is replaced by so calledcutting-plane model

f̂k(x) = max
j∈Jk

{f(yj) + ξT
j (x − yj)}. (1)

This model can be written in an equivalent form

f̂k(x) = max
j∈Jk

{f(xk) + ξT
j (x − xk) − αk

j},

where
αk

j = f(xk) − f(yj) − ξT
j (xk − yj) for all j ∈ Jk.

is a so-calledlinearization error. If f is convex, thenαk
j ≥ 0 for all j ∈ Jk and

f̂k(x) ≤ f(x) for all x ∈ R
n. In other words, the cutting-plane modelf̂k is

an under estimate forf and the nonnegative linearization errorαk
j measures how

good an approximation the model is to the original problem. In the nonconvex
case, these facts are not valid anymore and thus the linearization errorαk

j can be
replaced by so calledsubgradient locality measure (cf. [24])

βk
j = max {|αk

j | , γ‖xk − yj‖
2}, (2)

whereγ ≥ 0 is thedistance measure parameter (γ = 0 if f is convex). Then
obviouslyβk

j ≥ 0 for all j ∈ Jk andminx∈K f̂k(x) ≤ f(xk).

4

The descent direction is calculated by

dk = argmind∈Rn{f̂k(xk + d) +
1

2
ukd

T d}, (3)

where the stabilizing term1
2
ukd

T d guarantees the existence of the solutiondk and
keeps the approximation local enough. The weighting parameteruk > 0 improves
the convergence rate and accumulates some second order information about the
curvature off aroundxk (see e.g. [25, 37, 44]).

In order to determine the step size into the search directiondk, PBM uses
so-calledline search procedure: Assume thatmL ∈ (0, 1

2
), mR ∈ (mL, 1) and

t̄ ∈ (0, 1] are some fixed line search parameters. We first search for the largest
numbertkL ∈ [0, 1] such thattkL ≥ t̄ and

f(xk + tkLdk) ≤ f(xk) + mLtkLvk, (4)

wherevk is the predicted amount of descent

vk = f̂k(xk + dk) − f(xk) < 0.

If such a parameter exists we take along serious step

xk+1 = xk + tkLdk and yk+1 = xk+1. (5)

Otherwise, if (4) holds but0 < tkL < t̄, we take ashort serious step

xk+1 = xk + tkLdk and yk+1 = xk + tkRdk

and, if tkL = 0, we take anull step

xk+1 = xk and yk+1 = xk + tkRdk, (6)

wheretkR > tkL is such that

−βk+1
k+1 + ξT

k+1dk ≥ mRvk. (7)

In short serious steps and null steps there exists discontinuity in the gradient off .
Then the requirement (7) ensures thatxk andyk+1 lie on the opposite sides of this
discontinuity and the new subgradientξk+1 ∈ ∂f(yk+1) will force a remarkable
modification of the next search direction finding problem.

The iteration is terminated if

vk ≥ −εs,

whereεs > 0 is a final accuracy tolerance supplied by the user.
The pseudo-code of general bundle method is the following:

5

PROGRAM bundle method
INITIALIZE x1 ∈ R

n, ξ1 ∈ ∂f(x1), J1, v1, and εs > 0;
Set k = 1;
WHILE the termination condition |vk| ≤ εs is not met
Generate the search direction dk;
Find step sizes tkL and tkR;
Update xk, vk and Jk;
Set k = k + 1;
Evaluate f(xk) and ξk ∈ ∂f(xk);

END WHILE

RETURN final solution xk;
END bundle method

Under the upper semi-smoothness assumption [7] PBM can be proved to be glob-
ally convergent for locally Lipschitz continuous objective functions, which are
not necessarily differentiable or convex (see e.g. [25, 37]). In addition, in order to
implement the above algorithm one has to bound somehow the number of stored
subgradient and trial points, that is, the cardinality of index setJk. The global
convergence of bundle methods with a limited number of stored subgradients can
be guaranteed by using a subgradient aggregation strategy [24], which accumu-
lates information from the previous iterations. The convergence rate of PBM is
linear for convex functions [42] and for piecewise linear problems PBM achieves
a finite convergence [44].

2.4 Bundle Newton Method (BNEW)

Next we describe the main ideas of the second order bundle-Newton method
(BNEW) [30]. We suppose that at eachx ∈ R

n we can evaluate, in addition
to the function value and an arbitrary subgradientξ ∈ ∂f(x), also ann × n sym-
metric matrixG(x) approximating the Hessian matrix∇2f(x). Now, instead of
piecewise linear cutting-pane model (1) we introduce a piecewise quadratic model
of the form

f̃k(x) = max
j∈Jk

{f(yj) + ξT
j (x − yj) +

1

2
̺j(x − yj)

T Gj(x − yj)}, (8)

whereGj = G(yj) and̺j ∈ [0, 1] is some damping parameter. The model (8)
can be written equivalently as

f̃k(x) = max
j∈Jk

{f(xk) + ξT
j (x − xk) +

1

2
̺j(x − xk)

T Gj(x − xk) − αk
j}

and for allj ∈ Jk the linearization error takes the form

αk
j = f(xk) − f(yj) − ξT

j (xk − yj) −
1

2
̺j(xk − yj)

T Gj(xk − yj). (9)

6

Note that now, even in the convex case,αk
j might be negative. Therefore we

replace the linearization error (9) by the subgradient locality measure (2) and we
remain the propertyminx∈Rn f̃k(x) ≤ f(xk) (see [30]).

The search directiondk ∈ R
n is now calculated as the solution of

dk = argmind∈Rn{f̃k(xk + d)}. (10)

The line search procedure of BNEW follows the same principles than in PBM
(see Section 2.3). The only remarkable difference occurs inthe termination con-
dition for short and null steps. In other words, (7) is replaced by two conditions

−βk+1
k+1 + (ξk+1

k+1)
T dk ≥ mRvk

and
‖xk+1 − yk+1‖ ≤ CS,

whereCS > 0 is a parameter supplied by the user.
The pseudo-code for the method is the same as for PBM (see Section 2.3). Un-

der the upper semi-smoothness assumption [7] BNEW can be proved to be glob-
ally convergent for locally Lipschitz continuous objective functions. For strongly
convex functions, the convergence rate of BNEW is superlinear [30].

2.5 Limited Memory Bundle Method (LMBM)

In this subsection, we very shortly describe the limited memory bundle algorithm
(LMBM) [16, 17, 18, 23] for solving general, possibly nonconvex, large-scale
NSO problems. The method is a hybrid of the variable metric bundle methods [31,
47] and the limited memory variable metric methods (see e.g.[10]), where the first
ones have been developed for small- and medium-scale nonsmooth optimization
and the latter ones, on the contrary, for smooth large-scaleoptimization.

LMBM exploits the ideas of the variable metric bundle methods, namely the
utilization of null steps, simple aggregation of subgradients, and the subgradient
locality measures, but the search directiondk is calculated using a limited memory
approach. That is,

dk = −Dkξ̃k,

where ξ̃k is (an aggregate) subgradient andDk is the limited memory variable
metric update that, in the smooth case, represents the approximation of the inverse
of the Hessian matrix. Note that the matrixDk is not formed explicitly but the
search directiondk is calculated using the limited memory approach.

LMBM uses the original subgradientξk after the serious step (cf. (5)) and the
aggregate subgradientξ̃k after the null step (cf. (6)) for direction finding (i.e. we
setξ̃k = ξk if the previous step was a serious step). The aggregation procedure is

7

carried out by determining multipliersλk
i satisfyingλk

i ≥ 0 for all i ∈ {1, 2, 3},
and

∑3
i=1 λk

i = 1 that minimize the function

ϕ(λ1, λ2, λ3) = [λ1ξm + λ2ξk+1 + λ3ξ̃k]T Dk[λ1ξm + λ2ξk+1 + λ3ξ̃k]

+ 2(λ2βk+1 + λ3β̃k).

Hereξm ∈ ∂f(xk) is the current subgradient (m denotes the index of the itera-
tion after the latest serious step, i.e.xk = xm), ξk+1 ∈ ∂f(yk+1) is the auxiliary
subgradient, and̃ξk is the current aggregate subgradient from the previous itera-
tion (ξ̃1 = ξ1). In addition,βk+1 is the current subgradient locality measure (cf.
(2)) andβ̃k is the current aggregate subgradient locality measure (β̃1 = 0). The
resulting aggregate subgradientξ̃k+1 and aggregate subgradient locality measure
β̃k+1 are computed from the formulae

ξ̃k+1 = λk
1ξm + λk

2ξk+1 + λk
3ξ̃k and β̃k+1 = λk

2βk+1 + λk
3β̃k.

The line search procedure used in LMBM is rather similar to that used in
PBM (see Section 2.3). However, due to the simple aggregation procedure above
only one trial pointyk+1 = xk + tkRdk and a corresponding subgradientξk+1 ∈
∂f(yk+1) need to be stored.

As a stopping parameter, we use the value

wk = −ξ̃
T

k dk + 2β̃k

and we stop ifwk ≤ εs for some user specifiedεs > 0. The parameterwk is also
used during the line search procedure to represent the desirable amount of descent
(cf. vk in PBM).

In LMBM both the limited memory BFGS (L-BFGS) and the limited memory
SR1 (L-SR1) update formulae [10] are used in calculations of the search direction
and the aggregate values. The idea of limited memory matrix updating is that
instead of storing largen × n matricesDk, one stores a certain (usually small)
number of vectors obtained at the previous iterations of thealgorithm, and uses
these vectors to implicitly define the variable metric matrices. In the case of a null
step, we use the L-SR1 update, since this update formula allows us to preserve the
boundedness and some other properties of generated matrices which guarantee
the global convergence of the method. Otherwise, since these properties are not
required after a serious step, the more efficient L-BFGS update is employed (for
more details, see [16, 17, 18]).

The pseudo-code of LMBM is the following:

8

PROGRAM LMBM
INITIALIZE x1 ∈ R

n, ξ1 ∈ ∂f(x1), and εs > 0;
Set k = 1 and d1 = −ξ1;
WHILE the termination condition wk ≤ εs is not met
Find step sizes tkL and tkR;
Update xk to xk+1;
Evaluate f(xk+1) and ξk+1 ∈ ∂f(xk + tkRdk);
IF tkL > 0 THEN

Compute the search direction dk using ξk+1 and L-BFGS
update;

ELSE

Compute the aggregate subgradient ξ̃k+1;
Compute the search direction dk using ξ̃k+1 and L-SR1
update;

END IF

Set k = k + 1;
END WHILE

RETURN final solution xk;
END LMBM

Under the upper semi-smoothness assumption [7] LMBM can be proved to be
globally convergent for locally Lipschitz continuous objective functions [16, 18].

2.6 Discrete Gradient Method (DGM)

Next we briefly describe the discrete gradient method (DGM).More details can
be found in [4]. The idea of DGM is to hybridize derivative free methods with
bundle methods. In contrast with bundle methods, which require the computation
of a single subgradient of the objective function at each trial point, DGM approx-
imates subgradients by discrete gradients using function values only. Similarly
to bundle methods the previous values of discrete gradientsare gathered into a
bundle and the null step is used if the current search direction is not good enough.

We start with the definition of the discrete gradient. Let us denote by

S1 = {g ∈ R
n | ‖g‖ = 1}

the sphere of the unit ball and by

P = {z | z : R+ → R+, λ > 0, λ−1z(λ) → 0, λ → 0}

the set of univariate positive infinitesimal functions. In addition, let

G = {e ∈ R
n | e = (e1, . . . , en), |ej| = 1, j = 1, . . . , n}

be a set of all vertices of the unit hypercube inR
n. We take anyg ∈ S1,

e ∈ G, z ∈ P , a positive numberα ∈ (0, 1], and we computei =

9

argmax{|gj|, j = 1, . . . , n}. For e ∈ G we define the sequence ofn vectors
ej(α) = (αe1, α

2e2, . . . , α
jej, 0, . . . , 0) j = 1, . . . , n and forx ∈ R

n andλ > 0,
we consider the points

x0 = x + λg, xj = x0 + z(λ)ej(α), j = 1, . . . , n.

DEFINITION 2.1. Thediscrete gradient of the functionf at the pointx ∈ R
n is the

vectorΓi(x, g,e, z, λ, α) = (Γi
1, . . . , Γ

i
n) ∈ R

n with the following coordinates:

Γi
j = [z(λ)αjej)]

−1 [f(xj) − f(xj−1)] , j = 1, . . . , n, j 6= i,

Γi
i = (λgi)

−1

[

f(x + λg) − f(x) − λ

n
∑

j=1,j 6=i

Γi
jgj

]

.

It has been proved in [4] that the closed convex set of discrete gradients

D0(x, λ) = cl conv{v ∈ R
n |∃ g ∈ S1, e ∈ G, z ∈ P

such thatv = Γi(x, g,e, z, λ, α)}

is an approximation to the subdifferential∂f(x) for sufficiently smallλ > 0.
Thus, it can be used to compute the descent direction for the objective. However,
the computation of the whole setD0(x, λ) is not easy, and therefore, in DGM we
use only a few discrete gradients from the set to calculate the descent direction.

Let us denote byl the index of the subiteration in the direction finding proce-
dure, byk the index of the outer iteration and bys the index of inner iteration. We
start by describing the direction finding procedure. In whatfollows we use only
the iteration counterl whenever possible without confusion. At every iterationks

we first compute the discrete gradientv1 = Γi(x, g1,e, z, λ, α) with respect to
any initial directiong1 ∈ S1 and we set the initial bundle of discrete gradients
D̄1(x) = {v1}. Then we compute the vector

wl = argminw∈D̄l(x)‖w‖2,

that is the distance between the convex hullD̄l(x) of all computed discrete gradi-
ents and the origin. If this distance is less than a given toleranceδ > 0 we accept
the pointx as an approximate stationary point and go to the next outer iteration.
Otherwise, we compute another search direction

gl+1 = −
wl

‖wl‖

and we check whether this direction is descent. If it is, we have

f(x + λgl+1) − f(x) ≤ −c1λ‖wl‖,

10

with the given numbersc1 ∈ (0, 1) andλ > 0. Then we setdks
= gl+1, vks

= wl

and stop the direction finding procedure. Otherwise, we compute another discrete
gradientvl+1 = Γi(x, gl+1,e, z, λ, α) into the directiongl+1, update the bundle
of discrete gradients

D̄l+1(x) = conv{D̄l(x) ∪ {vl+1}}.

and continue the direction finding procedure withl = l + 1. Note that, at each
subiteration the approximation of the subdifferential∂f(x) is improved. It has
been proved in [4] that the direction finding procedure is terminating.

When the descent directiondks
has been found, we need to compute the next

(inner) iteration pointxks+1
= xks

+ tks
dks

, where the step sizetks
is defined as

tks
= argmax{t ≥ 0 | f(xks

+ tdks
) − f(xks

) ≤ −c2t‖vks
‖} ,

with givenc2 ∈ (0, c1].
The pseudo-code of DGM is the following:

PROGRAM DGM
INITIALIZE x1 ∈ R

n and k = 1;
OUTER ITERATION

Set s = 1 and xks
= xk;

WHILE the termination condition is not met
INNER ITERATION

Compute the vector vks
= argmin

v∈D̄(xks
)‖v‖

2,

where D̄(xks
) is a set of discrete subgradients.

IF ‖vks
‖ ≤ δk with δk > 0 s.t. δk ց 0 when k → ∞ THEN

Set xk+1 = xks
and k = k + 1;

Go to the next OUTER ITERATION;
ELSE

Compute the descent direction dk = −vks
/‖vks

‖;
Find a step size tk;
Construct the following iteration xks+1

= xks
+ tkdk;

Set s = s + 1 and go to the next INNER ITERATION;
END IF

END INNER ITERATION

END WHILE

END OUTER ITERATION

RETURN final solution xk;
END DGM

In [4] it is proved that DGM is globally convergent for locally Lipschitz con-
tinuous functions under assumption that the set of discretegradients uniformly
approximates the subdifferential.

11

2.7 Quasisecant method (QSM)

In this subsection we briefly describe the quasisecant method (QSM). More de-
tails can be found in [2, 3]. Here, it is again assumed that onecan compute both
the function value and one subgradient at any point.

QSM can be considered as a hybrid of bundle methods and gradient sampling
method [9]. The method builds up information about the approximation of the
subdifferential using bundling idea, which makes it similar to bundle methods,
while subgradients are computed from a given neighborhood of a current iteration
point, which makes the method similar to gradient sampling method.

We start this subsection with the definition of a quasisecantfor locally Lips-
chitz continuous functions.

DEFINITION 2.2. A vectorv ∈ R
n is called aquasisecant of the functionf at the

pointx ∈ R
n in the directiong ∈ S1 with the lengthh > 0 if

f(x + hg) − f(x) ≤ hvT g.

We will denote this quasisecant byv(x, g, h).
For a givenh > 0 let us consider the set of quasisecants at a pointx

QSec(x, h) = {w ∈ R
n | ∃ g ∈ S1 s.t.w = v(x, g, h)}

and the set of limit points of quasisecants ash ց 0:

QSL(x) = {w ∈ R
n |∃ g ∈ S1, hk > 0, hk ց 0 when k → ∞

s.t.w = lim
k→∞

v(x, g, hk)}.

A mappingx 7→ QSec(x, h) is called asubgradient-related (SR)-quasisecant
mapping if the corresponding setQSL(x) ⊆ ∂f(x) for all x ∈ R

n. In this
case elements ofQSec(x, h) are calledSR-quasisecants. In the sequel, we will
consider setsQSec(x, h) which contain only SR-quasisecants.

It has been shown in [2] that the closed convex set of quasisecants

W0(x, h) = cl conv QSec(x, h)

can be used to find a descent direction for the objective with any h > 0. However,
it is not easy to compute the entire setW0(x, h), and therefore we use only a few
quasisecants from the set to calculate the descent direction in QSM.

The procedures used in QSM are pretty similar to those in DGM but we
use here the quasisecantvl(x, gl, h) instead of the discrete gradientvl =
Γi(x, gl,e, z, λ, α). Thus, at every iterationks we compute the vector

wl = argminw∈V̄l(x)‖w‖2,

where V̄l(x) is a set of all quasisecants computed so far. If‖wl‖ < δ with
a given toleranceδ > 0, we accept the pointx as an approximate stationary

12

point, so-called(h, δ)-stationary point [2], and we go to the next outer itera-
tion. Otherwise, we compute another search directiongl+1 = −wl/‖wl‖ and
we check whether this direction is descent or not. If it is, wesetdks

= gl+1,
vks

= wl and stop the direction finding procedure. Otherwise, we compute an-
other quasisecantvl+1(x, gl+1, h), update the bundle of quasisecantsV̄l+1(x) =
conv{V̄l(x) ∪ {vl+1(x, gl+1, h)}} and continue the direction finding procedure
with l = l + 1. It has been proved in [2] that the direction finding procedure is
terminating. When the descent directiondks

has been found, we need to compute
the next (inner) iteration point similarly to that in DGM.

QSM is globally convergent for locally Lipschitz continuous functions under
the assumption that the setQSec(x, h) is a SR-quasisecant mapping, that is, qua-
sisecants can be computed using subgradients [2, 3]. The pseudo-code of QSM is
the same as that for DGM (see Section 2.6) when replacing discrete gradientsvks

with quasisecantsvks
(xks

,dks
, h) and the set of discrete gradients̄D(xks

) with
the set of quasisecants̄V (xks

).

3 Numerical Experiments

In this section we compare the implementations of the methods described in the
previous section. First we introduce the solvers and problems used, then we say
few words about the parameters and termination conditions of the codes and, fi-
nally, we report the numerical results obtained and draw some conclusions.

3.1 Solvers

The tested optimization codes are presented in Table 1. The experiments were
performed on an IntelR© Core

TM
2 CPU 1.80GHz.

Table 1: Tested pieces of software

Software Author(s) Method Reference

SUBG Karmitsa Subgradient [45]
SolvOpt Kuntsevich & Kappel Shor’sr-algorithm [21, 26, 45]
PBNCGC Mäkel̈a Proximal bundle [35, 37]
PNEW Lukšan & Vlček Bundle-Newton [30]
LMBM Karmitsa Limited memory bundle [17, 18]
DGM Bagirov et al. Discrete Gradient [4]
QSM Bagirov & Ganjehlou QuasiSecant [2, 3]

SUBG is a crude implementation of the basic subgradient algorithm. The step
length is chosen to be in some extent constant. Let us denote by l the largest

13

integer, smaller than or equal toitmax/c, whereitmax is the maximum number of
iterations andc > 0 is the user-specified maximum number of different step sizes.
We taketk = tinit in the firstl iterations and

tk =
tj×l

10(j + 1)
for k = j × l + 1, . . . , (j + 1) × l andj = 1, . . . , c.

We use the following three criteria as a stopping rule forSUBG: the number of
function evaluations (and iterations) is restricted by parameteritmax and also the
algorithm stops if either it cannot decrease the value of theobjective function
within m1 successive iterations (i.e.f(xl) > fbest for all l = k, . . . , k + m1,
wherefbest is the smallest value of the objective function obtained so far and
k ≥ 1), or it can not find a descent direction withinm2 successive iterations (i.e.
f(xl+1) > f(xl) for all l = k, . . . , k + m2, k ≥ 1). Since a subgradient method
is not a descent method we store the best valuefbest of the objective function and
the corresponding pointxbest and return them as a solution if any of the stopping
rule above is met.

SUBG is available for downloading fromhttp://napsu.karmitsa.fi/subgra/.

SolvOpt (Solver for local nonlinear optimization problems) is an implemen-
tation of Shor’sr-algorithm. The approaches used to handle the difficulties with
step size selection and termination criteria in Shor’sr-algorithm are heuristic (for
details see [21]).

In SolvOpt one can select to use either original subgradients or difference
approximations of them (i.e. the user does not have to code difference approxi-
mations but to select one parameter to do this automaticly).In our experiments
we have used both analytically and numerically calculated subgradients. In what
follows, we denoteSolvOptA andSolvOptN, respectively, the corresponding
solvers.

The MatLab, C and Fortran source codes forSolvOpt are available for
downloading fromhttp://www.kfunigraz.ac.at/imawww/kuntsevich/solvopt/. In
our experiments we usedSolvOpt v.1.1 HP-UX FORTRAN-90 sources. To
compile the code, we usedgfortran, the GNU Fortran 95 compiler.

PBNCGC is an implementation of the most frequently used bundle method
in NSO, that is, the proximal bundle method. The code includes the con-
straint handling (bound constraints, linear constraints,and nonlinear/nonsmooth
constraints). The quadratic direction finding problem (3) is solved by the
PLQDF1 subroutine implementing dual projected gradient gradientmethod pro-
posed in [28].

PBNCGC can be used (free for academic purposes) via WWW-NIMBUS -
system (http://nimbus.mit.jyu.fi/) [38].

14

PNEW is a bundle-Newton solver for unconstrained and linearly constrained
NSO. We used the numerical calculation of the Hessian matrixin our experiments
(this can be done automaticly). The quadratic direction finding problem (10) is
solved by the subroutinePLQDF1 [28]. PNEW is available for downloading from
http://www.cs.cas.cz/luksan/subroutines.html.

LMBM is an implementation of a limited memory bundle method specially devel-
oped for large-scale nonsmooth problems. In our experiments we used the adap-
tive version of the code with the initial number of stored correction pairs (used to
form the variable metric update) equal to 7 and the maximum number of stored
correction pairs equal to 15. The Fortran 77 source code and the mex-driver (for
MatLab users) are available for downloading fromhttp://napsu.karmitsa.fi/lmbm/.

DGM is a discrete gradient solver for derivative free optimization. To applyDGM,
one only needs to be able to compute at every pointx the value of the objective
function and the subgradient will be approximated. The source code ofDGM is
available on request:a.bagirov@ballarat.edu.au.

QSM is a quasisecant solver for nonsmooth possible nonconvex minimiza-
tion. We have used both analytically calculated subgradients and approximated
subgradients in our experiments (this can be done automaticly by selecting
one parameter). In what follows, we denoteQSMA and QSMN, respectively,
the corresponding solvers. The source code ofQSM is available on request:
a.bagirov@ballarat.edu.au.

All the algorithms butSolvOpt were implemented in Fortran77 with double-
precision arithmetic. To compile the codes, we usedg77, the GNU Fortran 77
compiler.

In Table 2 we recall the basic assumptions needed for the solvers.

Table 2: Assumptions needed for softwares

Software Assumptions to objective Needed information

SUBG convex f(x), arbitraryξ ∈ ∂f(x)
SolvOptA convex f(x), arbitraryξ ∈ ∂f(x)
SolvOptN convex f(x)
PBNCGC semi-smooth f(x), arbitraryξ ∈ ∂f(x)
PNEW semi-smooth f(x), arbitraryξ ∈ ∂f(x),

(approximated Hessian)
LMBM semi-smooth f(x), arbitraryξ ∈ ∂f(x)
DGM quasi-differentiable, semi-smoothf(x)
QSMA quasi-differentiable, semi-smoothf(x), arbitraryξ ∈ ∂f(x)
QSMN quasi-differentiable, semi-smoothf(x)

15

3.2 Problems

We consider ten types of problems:

SC: Small-scale (n ≤ 20) problems with nonsmooth convex objective function
(Problems 2.1 – 2.7, 2.9, 2.22 and 2.23, and 3.4 – 3.8, 3.10, 3.12, 3.16, 3.19 and
3.20 in [33]);

SNC: Small-scale problems with nonsmooth nonconvex objective function
(Problems 2.8, 2.10 – 2.12, 2.14 – 2.16, 2.18 – 2.21, 2.24 and 2.25, and 3.1,
3.2, 3.15, 3.17, 3.18 and 3.25 in [33]);

MC: Medium-scale (n = 50) problems with nonsmooth convex objective func-
tion (Problems 1 – 5 in [17], and 2 and 5 inTEST29 [29] and six maximum of
quadratic functions, see Appendix);

MNC: Medium-scale problems with nonsmooth nonconvex objectivefunction
(Problems 6 – 10 in [17], and 13, 17 and 22 inTEST29 [29] and six maximum of
quadratic functions);

LC: Large-scale (n = 200) problems with nonsmooth convex objective function
(see MC problems);

LNC: Large-scale problems with nonsmooth nonconvex objective function (see
MNC problems);

XLC: Extra-large-scale (n = 1000) problems with nonsmooth convex objective
function (see MC problems);

XLNC: Extra-large-scale problems with nonsmooth nonconvex objective func-
tion (see MNC problems);

XXLC: Extra-extra-large-scale (n = 4000) problems with nonsmooth convex
objective function (see MC problems but only two maximum of quadratics with
diagonal matrix);

XXLNC: Extra-extra-large-scale problems with nonsmooth nonconvex objec-
tive function (see MNC problems but only two maximum of quadratics with diag-
onal matrix).

Problems 2, 5, 13, 17, and 22 inTEST29 are from the software package UFO
(Universal Functional Optimization) [29]. They may also befound in [16]. The
problems were selected such that in all cases all the solversconverged to the same
local minimum. However, it is worth of mention that, in the case of different
local minima (i.e. in some nonconvex problems omitted from the test set), solvers
LMBM,SolvOpt, andSUBG usually converged to the same local minimum, while
PBNCGC, DGM, andQSM converged to the different local minimum. SolverPNEW
converged sometimes with the first group and some other timeswith the second.

16

Moreover,DGM andQSM seem to have an aptitude for finding global or at least
smaller local minima than the other solvers. For example, inproblems 3.13 and
3.14 in [33] all the other solvers converged to the minimum reported in [33] but
DGM andQSM “converged” to minus infinity.

3.3 Termination, parameters, and acceptance of the results.

The determination of stopping criteria for different solvers, such that the compar-
ison of different methods is fair, is not a trivial task.

We say that a solver finds the solution with respect to a toleranceε > 0 if

fbest − fopt

1 + |fopt|
≤ ε,

wherefbest is a solution obtained with the solver andfopt is the best known (or
optimal) solution.

We fixed the stopping criteria and parameters for the solversusing three dif-
ferent problems from three different problem classes: problems 2.4 in [33] (SC),
3.15 in [33] (SNC), and 3 in [17] withn = 50 (MC). With all the solvers we
sought the loosest termination parameters such that the results for all the three test
problems were still acceptable with respect to the tolerance ε = 10−4.

In addition to the usual stopping criteria of the solvers, weterminated the
experiments if the elapsed CPU time exceeded half an hour.

We have accepted the results for small- and medium-scale problems (n ≤ 50)
with respect to the toleranceε = 5 · 10−4. With larger problems (n ≥ 200),
we have accepted the results with the toleranceε = 10−3. In what follows, we
report also the results for all problem classes with respectto the relaxed tolerance
ε = 10−2 to have an insight into the reliability of the solvers (i.e. is a failure a real
failure or is it just an inaccurate result which could possible be prevented with a
more tight stopping parameter).

With all the bundle based solvers the distance measure parameter value
γ = 0.5 was used with nonconvex problems. WithPBNCGC andLMBM the value
γ = 0 was used with convex problems and, since withPNEW γ has to be positive,
γ = 10−10 was used withPNEW. For those solvers storing subgradients (or ap-
proximations of subgradients) — that is,PBNCGC, PNEW, LMBM, DGM, andQSM
— the maximum size of the bundle was set tomin{n + 3, 100}. For all other
parameters we used the default settings of the codes.

3.4 Results

The results are summarized in Figures 1 – 13 and in Table 3. Theresults are
analyzed using the performance profiles introduced in [14].We compare the effi-
ciency of the solvers both in terms of computational times and numbers of function
and subgradient evaluations (evaluations for short). In the performance profiles,

17

the value ofρs(τ) atτ = 0 gives the percentage of test problems for which the cor-
responding solver is the best (it uses least computational time or evaluations) and
the value ofρs(τ) at the rightmost abscissa gives the percentage of test problems
that the corresponding solver can solve. That is, the reliability of the solver (this
does not depend on the measured performance). Moreover, therelative efficiency
of each solver can be directly seen from the performance profiles: the higher the
particular curve, the better the corresponding solver. Formore information on
performance profiles, see [14].

3.4.1 Small problems

There was not a big difference in the computational times of the different solvers
when solving the small-scale problems. Thus, only the numbers of function and
subgradient evaluations are reported in Figure 1.

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(a) Convex

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(b) Nonconvex

Figure 1: Evaluations for small problems (20 problems withn ≤ 20, ε = 5·10−4).

PBNCGC was usually the most efficient solver when comparing the numbers of
function and subgradient evaluations. This is, in fact, true for all sizes of prob-
lems. Thus,PBNCGC should be a good choice as a solver in the case, the ob-
jective function value and/or the subgradient are expensive to compute. However,
PBNCGC failed to achieve the desired accuracy in 25% of the small-scale problems
(both SC and SNC) which means that it had almost the worst degree of success in
solving these problems.

SUBG is not at all suitable for nonconvex problems: it failed in 60% of the
problems (ε = 5 · 10−4, see Figure 1(b)). On the other hand,SolvOpt was
one of the most reliable solvers together withQSM in both convex and noncon-
vex settings, although, theoretically, Shor’sr-algorithm is not supposed to solve
nonconvex problems.SolvOptA was also the most efficient method expect for
PBNCGC (especially in the nonconvex case) and, when comparing toPBNCGC, it
was more reliable.

18

Except forSUBG, the solvers had not a big difference in the numbers of suc-
cess in solving SC or SNC problems. However, it is noteworthythatQSM com-
puted nonconvex problems more reliable than convex ones.

Most of the failures reported here are, in fact, inaccurate results: all the solvers
butPNEW succeed in solving equal or more that 95% of SC problems with respect
to the relaxed toleranceε = 10−2. The corresponding percentage for SNC prob-
lems was 85%, although here alsoSUBG failed to solve such a many problems.

In SC problemsPNEW was the second most efficient solver (see Figure 1(a)).
However, it failed to solve 30% of the convex problems and 35%of the nonconvex
problems. The reason for this relatively large number of failures withPNEW is in
its sensitivity to internal parameter XMAX (RPAR(9) in the code) which is noted
also in [32]. If we, instead of only one (default) value, useda selected value for
this parameter, also the solverPNEW solved 85% of SNC problems.

The derivative free solversDGM andQSMN performed similar in these small-
scale problems butQSMN was clearly more reliable in the nonconvex case.
SolvOptN usually used less evaluations than the derivative free solvers both
in SC and SNC problems. However, in the nonconvex case, alsoSolvOptN lost
out toQSMN in reliability.

3.4.2 Medium-scale problems

Already with medium-scale problems, there was a wide diversity on the computa-
tional times of different codes. Moreover, the numbers of function and subgradi-
ent evaluations used with solvers were not anymore directlycomparable with the
elapsed computational times. For instance,PBNCGC was clearly the winner when
comparing the numbers of evaluations (see Figures 2(b) and 3(b)). However, when
comparing computational times,SolvOptA was equally efficient withPBNCGC
in MC problems (see Figure 2(a)) andLMBMwas the most efficient solver in MNC
problems (see Figure 3(a)).

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(a) CPU-time

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(b) Evaluations

Figure 2: CPU-time and evaluations for MC problems (13 problems withn = 50,
ε = 5 · 10−4).

19

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(a) CPU-time

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

ASM

SecMA

SecMN

(b) Evaluations

Figure 3: CPU-time and evaluations for MNC problems (14 problems withn =
50, ε = 5 · 10−4).

SUBG was clearly the worst solver with respect to both computational times and
evaluations in both MC and MNC problems. It was also the most unreliable solver.
It solved only about 30% of the convex and 20% of the nonconvexproblems and
it failed in all the quadratic problems.

Also the other subgradient solverSolvOpt had some difficulties with the ac-
curacy, especially, in the nonconvex case.SolvOptN solved about 77% of the
convex problems with respect to toleranceε = 5 · 10−4 and 92% withε = 10−2.
For SolvOptA the corresponding values were 85% and 92%. In the noncon-
vex case, the values were 64% vs. 92% forSolvOptN and 71% vs. 86% for
SolvOptA. In other words,SolvOpt would have benefit most if we instead of
toleranceε = 5 · 10−4 would have used the relaxed toleranceε = 10−2 to accept
the results. Note, however that with small-scale problemsSolvOpt was one of
the most reliable solvers. Thus,SolvOpt solved convex problems much better
than nonconvex with respect to toleranceε = 5 · 10−4 (see Figures 2 and 3).

With the other solvers there was not a big difference in solving convex or
nonconvex problems but withPNEW: PNEW solved about 79% of the nonconvex
problems and only 46% of the convex problems. AlsoLMBM succeed in solving
little bit more nonconvex than convex problems. In the convex case,PBNCGC,
QSMA andQSMN succeed to solve all the problems with the desired accuracy.
With the relaxed toleranceε = 10−2 alsoDGM managed to solve all the problems
and all the solvers butPNEW andSUBG succeed in solving more than 90% of
the problems. In the nonconvex case,PBNCGC andDGM solved all the problems
successfully. With relaxed parameterQSMA andQSMN succeed as well and all the
solvers butPNEW andSUBG managed to solve more than 85% of the problems.

SolversDGM andQSMN behaved rather similarly butQSMNwas a little bit more
efficient both with respect to computational times and evaluations. SolvOptN
outperformed these two methods in efficiency but lost clearly in reliability.

PNEW failed to solve all but one of the convex quadratic problems and succeed
in solving all but one non-quadratic problems. In the nonconvex casePNEW suc-

20

ceed in solving all the quadratic problems but then it had some difficulties with
the other problems. Again, the reason for these failures is in its sensitivity to in-
ternal parameterXMAX. If we, instead of only one (default) valueXMAX=1000,
used also the valueXMAX=2 for this parameter and select the better result,PNEW
solved all the convex quadratic problems (7 pc.) successfully. The computations
with XMAX=2 failed only in one problem, whereXMAX=1000 succeed. In the
nonconvex case, the solver succeed in solving all quadraticproblems with both
parameterXMAX=1000 andXMAX=2. However, withXMAX=2 the number of used
function and subgradient calls was almost fourfold when compared to that used
with parameterXMAX=1000. The usage of actual Hessian instead of the approxi-
mation helped a little bit in the convex quadratic case. However the computational
times were enormously longer (when compared to those obtained withXMAX =
2). In the nonconvex case and with larger problems (LC, LNC, XLC, XLNC), the
usage of actual Hessian made the results worse.

In [36], PNEW is reported to be very efficient in quadratic problems. Also in
our experiments,PNEW was clearly more efficient with the quadratic problems
than with the non-quadratic. However, expect for some smallproblems, it was not
in any case the most efficient method.

3.4.3 Large problems

When solving large-scale problems, the solvers divided intotwo groups (more
clearly in the convex case, see Figure 4): the first group consists of more effi-
cient solvers;LMBM, PBNCGC, QSMA, andSolvOptA. The second group con-
sists of solvers using some kind of approximation for subgradients or Hessian,
andSUBG. In the nonconvex case (see Figure 6), the inaccuracy ofSolvOptA
made it slide to the group of less efficient solvers. On the other hand, success-
fully solved quadratic problems almost rosePNEW to the group of more efficient
solvers (especially, when comparing the numbers of function evaluations, see Fig-
ure 6(b)).

AlthoughPBNCGCwas usually (on 70%) the most efficient solver tested in the
convex case (see Figure 4(a)), it was also the one who needed the longest time to
compute problem 3 in [17]. Indeed, an average time used to solve a LC problem
with PBNCGC was 15.7 seconds while withSolvOptA andLMBM they were 1.3
and 1.6 seconds, respectively (the average times are calculated using 9 problems
that all the solvers above succeed in solving).

In the nonconvex case,LMBM andPBNCGC were the most efficient solvers.
However, withPBNCGC, there was a big variation in the computational times
for different problems while withLMBM all the problems were solved equally
efficiently.

The efficiency ofPBNCGC is mostly due to its efficiency in quadratic problems
(i.e. problem 1 in [17] and six maxq-problems in the convex case and six maxq-
problems in the nonconvex case, see Appendix):PBNCGC was the most efficient

21

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(a) CPU-time

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(b) Evaluations

Figure 4: CPU-time and evaluations for LC problems (13 problems withn = 200,
ε = 10−3).

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(a) CPU-time

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(b) Evaluations

Figure 5: CPU-time and evaluations for LC maxq-problems (7 problems with
n = 200, ε = 10−3).

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(a) CPU-time

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(b) Evaluations

Figure 6: CPU-time and evaluations for LNC problems (14 problems withn =
200, ε = 10−3).

22

solver in all but one of these problems when comparing the computational times
and superior in all cases when comparing the numbers of evaluations. Figure 5
illustrates the performance of the solvers with convex quadratic problems. As
beforePNEW failed in all but one of these problems.

Besides being usually the most efficient,PBNCGC was also the most reliable
solver tested in large-scale settings. In the convex case itwas the only solver that
succeed in solving all the problems with the desired accuracy. In the nonconvex
caseQSMA was successfull as well. With the relaxed toleranceε = 10−2 also
SolvOptA, QSMA, QSMN andDGM managed in solving all the convex problems,
while LMBM andSolvOptN succeed in solving more than 84% of the problems.
In the nonconvex case,LMBM, PBNCGC QSMA, QSMN andDGM solved all the
problems with the relaxed tolerance.

SolvOptN had some serious difficulties with the accuracy: for instance, with
the relaxed toleranceSolvOptN solved almost 80% of LNC problems (in Fig-
ure 6 less than 30%). Similar effect could been seen withSolvOptA, although
not as pronounced.

Naturally, for the solvers using difference approximationor some other ap-
proximation based on the calculation of the function or subgradient values, the
number of evaluations grows enormously when the number of variables increases.
However, if you need to solve a problem, where the subgradient is not available,
the best solver would probably beSolvOptN (only in the convex case) due its
efficiency orQSMN due its reliability.

3.4.4 Extra large problems

Likewise with large problems, there were two clear groups inextra large problems
(see Figures 7 and 8). AgainPBNCGC was clearly the most reliable and efficient
solver tested and again the efficiency ofPBNCGC is mostly due to its efficiency
in quadratic problems. That is, while being clearly the mostefficient method in
almost all quadratic problems, the average time used to a problem (including all
the problems that all the solvers below succeed in solving and in the nonconvex
case ignoring the solverSolvOptAwhich solved only 43 % of the problems) was
much larger withPBNCGC (266 sec for the convex and 325 sec for the nonconvex
problems) than that with, for instance,LMBM (54.5 and 95.7),QSMA (98.6 and
190.8) orSolvOptA (22.0 for the convex problems). Indeed, in the convex case,
LMBM was the most efficient solver in all the non-quadratic problems it could
solve. Unfortunately,LMBM succeed in solving only three of them (from six).

In the nonconvex case (see Figure 8), the inaccuracy ofSolvOptA made it
again slide to the group of less efficient solvers. Figure 9 illustrates the results
with the relaxed toleranceε = 10−2. As can be seen, hereSolvOptA is among
more efficient solvers, although its accuracy is not as good as that of the others.

Also LMBM andQSMA had some difficulties with the accuracy in the non-
convex case (see Figure 8). With the relaxed tolerance, theysolved all XLNC

23

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(a) CPU-time

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(b) Evaluations

Figure 7: CPU-time and evaluations for XLC problems (13 problems withn =
1000, ε = 10−3).

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(a) CPU-time

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(b) Evaluations

Figure 8: CPU-time and evaluations for XLNC problems (14 problems withn =
1000, ε = 10−3).

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(a) CPU-time

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(b) Evaluations

Figure 9: CPU-time and evaluations for XLNC problems, low accuracy (14 prob-
lems withn = 1000, ε = 10−2).

24

problems (see Figure 9). With this toleranceLMBM was clearly the most efficient
solver in non-quadratic problems and the computational times of bothLMBM and
QSMA were comparable with those ofPBNCGC in the whole test set.

SolversPBNCGC, DGM andQSM were the only solvers which solved two ex-
tra large problems in which there is only one nonzero elementin the subgradient
vector (i.e. Problem 1 in [17] and 2 inTEST29 [29]). With the other methods,
there were some difficulties already withn = 50 and some more withn = 200
(note that for M, L and XL settings, the problems are the same,only the number
of variables is changing). In the case ofLMBM these difficulties are easy to ex-
plain: the approximation of the Hessian formed during the calculations is dense
and, naturally, not even close to the real Hessian in sparse problems. It has been
reported [17] thatLMBM is best suited for the problems with dense subgradient
vector whose component depend on the current iteration point. This result is in
line with the noted result thatLMBM solves nonconvex problems very efficiently.

In the convex casePNEW solved all but the above mentioned two problems
and the maximum of quadratics problems. SolversDGM, LMBM, SUBG andQSMN
failed to solve (possible in addition to the two above mentioned problems) two
piecewise linear problems (Problem 2 in [17] and 5 inTEST29 [29]) and also
QSMA failed to solve one of them.

In all the maximum of quadratics problems, the time limit wasexceeded with
all the solvers using some kind of approximation for subgradients or Hessian.
Thus, the number of failures with these solvers is probably larger than it should
be.

3.4.5 Extra extra large problems

Finally we tested the most efficient solvers so far, that isLMBM, PBNCGC, QSMA
andSolvOptA, with the problems withn = 4000.

In the convex case, the solverQSMA, which has kept rather low profile until
now, was clearly the most efficient method althoughPBNCGC still used the least
evaluations.QSMA was also the most reliable of the solvers tested (see Figure 10).

LMBM solved all the problems it could solve in a relatively short time while
with all the other solvers there were a wide variation in the computational times
elapsed for different problems. However, in the convex case, the efficiency of
LMBM was again ruined by its unreliability.

In the nonconvex caseLMBM andQSMA were approximately as good both in
computational times, evaluations and reliability (see Figure 11). HerePBNCGC
was the most reliable solver, although with the toleranceε = 10−2 QSMA was the
only solver that solved all the nonconvex problems.LMBM andPBNCGC failed in
one andSolvOpt in two problems.

25

0 2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SolvOptA

PBNCGC

LMBM

QSMA

(a) CPU-time

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SolvOptA

PBNCGC

LMBM

QSMA

(b) Evaluations

Figure 10: CPU-time and evaluations for XXLC problems (9 problems withn =
4000, ε = 10−3).

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SolvOptA

PBNCGC

LMBM

QSMA

(a) CPU-time

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

ρ s(τ
)

SolvOptA

PBNCGC

LMBM

QSMA

(b) Evaluations

Figure 11: CPU-time and evaluations for XXLNC problems (10 problems with
n = 4000, ε = 10−3).

3.4.6 Convergence speed and number of success

In this subsection we first study (experimentally) the convergence speed of the
algorithms using one medium-scale convex problem (Problem3 in [17]). The
exact minimum value for this function (withn = 50) is −49 · 21/2 ≈ −69.296.

For the limited memory bundle method the rate of convergencehas not been
studied theoretically. However, at least in this particular problem, solversLMBM
andPBNCGC converged at approximately the same rate. Moreover, if we study
the number of evaluationsPBNCGC andLMBM seem to have the fastest converge
speed of the solvers tested (see Figure 12(b)), although, teoretically, proximal
bundle method is only linearly convergent.

SUBG converged linearly but very, very slowly andPNEW, although finally
found the minimum, did not decrease the value of the functionin 200 first evalua-
tions. Naturally, withPNEW a large amount of subgradient evaluations are needed
to compute the approximative Hessian. SolversSolvOptA, SolvOptN, DGM,

26

2 4 6 8 10 12 14 16 18 20

−60

−40

−20

0

20

40

Number of iterations

f(
x)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(a) First 20 iterations

0 20 40 60 80 100 120 140 160 180 200

−60

−40

−20

0

20

40

Number of evaluations

f(
x)

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(b) First 200 evaluations

Figure 12: Function values versus iterations (a), and function values versus num-
ber of function and subgradient evaluations (b).

QSMA, andQSMN took a very big step downwards already in iteration two (see
Figure 12(a)). However, they took quite many function evaluations per iteration.
In Figure 12 it is easy to see that Shor’sr-algorithm (i.e. solversSolvOptA and
SolvOptN) is not a descent method.

In order to see how quickly the solvers reach some specific level, we studied
the value of the function equal to−69. With PBNCGC it took only 8 iterations
to go below that level. The corresponding values for other solvers were 17 with
QSMA andQSMN, 20 withLMBM andPNEW, and more than 20 with all the other
solvers. In terms of function and subgradient evaluations the values were 18 with
PBNCGC, 64 with LMBM and 133 withSolvOptA. Other solvers needed more
than 200 evaluations to go below−69.

The worst of the solvers wereSUBG, which took 7382 iterations and 14764
evaluations to reach the desired accuracy and stop, andSolvOptN, which never
reached the desired accuracy (the final value obtained after42 iterations and 2342
evaluations was−68.915).

Finally, in Figure 13 we give the proportions of the succesfully terminated
runs obtained with each solver within the different problemclasses. Although we
have already said something about the reliability of the solvers, we study Figure
13 to see if the convexity or the number of variables have any significant effect on
the success rate of the solvers.

In the figure, we see that with both variants ofSolvOpt the degree of suc-
cess decrease clearly when the number of variables increases or the problem is
nonconvex. In addition, with the solvers that use approximations to subgradient
or Hessian there is a clear drop-out when moving from 200 variables to 1000 vari-
ables. At least one reason for this is that withn = 1000 the solvers terminated
because of the maximum time limit (thus failing to reach the desired accuracy).

DGM andQSMN were reliable methods both with convex and nonconvex prob-
lems up to 200 variables, whileLMBM andPNEW solved the nonconvex problems
more reliably than the convex ones. WithPNEW the maximum time limit was

27

SC MC LC XLC XXLC
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

Problem class

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(a) Convex

SNC MNC LNC XLNC XXLNC
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
uc

ce
ss

Problem class

SubG

SolvOptA

SolvOptN

PBNCGC

PNEW

LMBM

DGM

QSMA

QSMN

(b) Nonconvex

Figure 13: Proportions of successfully terminated runs within different problem
classes: convex problems (a), and nonconvex problems (b).

exceeded in many cases withn = 1000, thus the exception. WithPNEW the re-
sult could be different if tuned parameterXMAX was used. WithLMBM the result
is in harmony with the earlier claims [16, 17] thatLMBM works better for more
nonlinear functions.

PBNCGC solved medium-scale and larger problems in a very reliable way but
it was almost the worst solver in small-scale problems. Thisresult has probably
nothing to do with the problem’s size but more with the different problem classes
used.

4 Conclusions

We have tested the performance of different nonsmooth optimization solvers in the
solution of different nonsmooth problems. The results are summarized in Table 3,
where we give our recommendations for the “best” solver for different problem
classes. Since it is not always unambiguous what is the best,we give credentials
both in the cases when the most efficient (in terms of used computer time) and the
most reliable solver are sought out. If there is more than onesolver recommended
in Table 3, the solvers are given in the alphabetical order. The parenthesis in the
table mean that the solver is not exactly as good as the first one but still a solver
to be reckoned with the problem class.

Although, in our experiments we got extremely good results with the prox-
imal bundle solverPBNCGC, we can not say that it is clearly the best method
tested. The inaccuracy in small-scale problems, great variations in the computa-
tional times occurred in larger problems and the earlier results obtained make us
believe that our test set favored this solver over the othersa little bit. Even so,
we can say thatPBNCGC was one of the best solvers tested and it is especially
efficient for the maximum of quadratics and piecewise linearproblems.

28

Table 3: Summation of the results

Problem’s type Problem’s size Seeking for Efficiency Seeking for Reliability

Convex S PBNCGC, PNEW(1), (SolvOpt(A+N)) DGM, SolvOpt(A+N)
M, L, XL LMBM(2), PBNCGC, (QSMA, SolvOptA) PBNCGC, QSMA
XXL LMBM(2), QSMA QSMA, (PBNCGC)

Nonconvex S PBNCGC, SolvOptA, (QSMA) QSM(A+N), (SolvOptA)
M, L, XL LMBM, PBNCGC, (QSMA) DGM, LMBM, PBNCGC
XXL LMBM, QSMA PBNCGC, (LMBM, QSMA)

Piecewise linear S, M PBNCGC, SolvOptA PBNCGC, SolvOptA
or sparse L, XL, XXL PBNCGC, QSMA(3) DGM, PBNCGC, QSMA

Piecewise quadratic S PBNCGC, PNEW(1), (LMBM, SolvOptA) LMBM, PBNCGC, PNEW(1), SolvOptA
M, L, XL, XXL LMBM, PBNCGC, (SolvOptA) DGM, LMBM, PBNCGC, QSMA

Highly nonlinear S LMBM, PBNCGC, SolvOptA LMBM, QSMA, SolvOptA
M LMBM, PBNCGC LMBM, PBNCGC, QSMA
L, XL, XXL LMBM LMBM, QSMA

Function evaluations S PBNCGC, (PNEW(1), SolvOptA) QSMA, SolvOptA
are expensive M, L, XL, XXL PBNCGC, (LMBM(4), SolvOptA) PBNCGC, (LMBM(4), QSMA)

Subgradients are not S SolvOptN QSMN, SolvOptN(5), (DGM)
available M, L SolvOptN, QSMN DGM, QSMN

XL QSMN, (DGM) DGM, QSMN

(1) PNEW may require tuning of internal parameterXMAX. (2)LMBM, if not a piecewise linear or sparse problem. (3)PBNCGC in piecewise linear problems,

QSMA in other sparse problems. (4)LMBM especially in the nonconvex case. (5)QSMN especially in the nonconvex case,SolvOptN only in the convex case.

29

On the other hand, the limited memory bundle solverLMBM suffered from ill-
fitting test problems in convex M, L, XL and XXL cases. In the test set there
were 4 problems (out of 13) in whichLMBM was known to have difficulties. In
addition,LMBM did not beatPBNCGC in any maximum of quadratics problems
but in one withn = 4000. This, however, is not the inferiority ofLMBM but
rather the superiority ofPBNCGC in these kinds of problems.LMBM was quite
reliable in the nonconvex case in all numbers of variables tested and it solved
all the problems — even the largest ones — in relatively shorttime while, for
example, withPBNCGC there were a great variation on the computational times
of different problems.LMBM works best for (highly) nonlinear functions while for
piecewise linear functions it might be a good idea to find another solver.

In convex small-scale problems the bundle-Newton solverPNEW was the sec-
ond most efficient solver tested. However,PNEW suffers very badly from the fact
that it is very sensitive to the internal parameterXMAX. Already using two values
for this parameter (e.g. default value 1000 and the smallestrecommended value
2) the results would have been much better and especially thedegree of success
would have been much higher. The solver has been reported to be best suited for
quadratic problems [36] and, indeed, it solved (nonconvex)quadratic problems
faster that non-quadratic. However, withn ≥ 50 it did not beat the other solvers
in these problems due to large approximation of the Hessian matrix required.

The standard subgradient solverSUBG is usable only for small-scale convex
problems: the degree of success was 80% in SC, otherwise it wasless than 40%. In
addition, the implementations of Shor’sr-algorithmSolvOptA andSolvOptN
did their best in small-scale problems (also in the nonconvex case!). Nevertheless,
SolvOptA solved also L, XL and even XXL problems (convex) rather efficiently.
In larger nonconvex problems these methods suffered from inaccuracy.

Thus, when comparing the reliability in large-scale settings, it seems that one
should selectPBNCGC for convex problems whileLMBM is good for nonconvex
problems. On the other hand, the quasi-secant solverQSMA was reliable and ef-
ficient both in convex and nonconvex large problems. However, with QSMA there
were a some variation on the computational times of different problems (not as
much asPBNCGC, though) whileLMBM solved all the problems in a relatively
short time.

The solvers using discrete gradients, that is the discrete gradient solverDGM
and quasisecant solver with discrete gradientsQSMN, usually lost out in efficiency
to the solvers using analytical subgradients. However, in small and medium-scale
problems the differences were not significant and the reliability of DGM andQSMN
seems to be very good both with convex and nonconvex problems. Moreover
in the case of highly nonconvex functions (supposing that you seek for global
optimum)DGM or QSM (either with or without subgradients) would be a good
choice, since these methods tend to jump over the narrow local minima.

To answer the question asked in the Introduction, the best solver for a non-
convex nonsmooth problem with 200 variables is the limited memory bundle

30

method. But that is only if we knew nothing else about the objective. If we,
for instance, knew that the objective has sparse subgradient vector or it is a max-
imum of quadratics problem the best solver would probably beproximal bundle
method. On the other hand, if we are unable to identify subgradient vector, either
Shor’sr-algorithm with finite difference approximations or, sincein some nons-
mooth cases finite differences may cause serious misinterpretation [27], discrete
gradient method or secant method with discrete gradients would be a good choice.

Acknowledgements

We would like to acknowledge professors Kuntsevich and Kappel for providing
Shor’sr-algorithm in their web-page as well as professors Lukšan and Vľcek for
providing the bundle-Newton algorithm.

The work was financially supported by the University of Turku(Finland) and
the University of Ballarat (Australia).

Appendix

Maximum of quadratics. Maximum of quadratic functions are defined as the
point-wise maximum of a finite collection of quadratics functions. That is

f(x) = max{fj(x) =
1

2
xT Ajx + bT

j x + cj | j = 1, . . . , nf},

whereAj aren × n symmetric matrices (in the convex case positive definite),
bj ∈ R

n andcj ∈ R. With this definition, many different examples are easily cre-
ated by choosing the values ofn, nf , and the sparsity parameter0 ≤ ps ≤ 1
(ps = 0 causes the diagonal matrix,ps = 1 causes the dense matrix, and
0 < ps < 1 causes the sparse matrix with approximatelypsn

2 + n nonzeros)
and then randomly generatingnf objectsAj, bj andcj. Depending on the positive
definiteness of matricesAj both convex and nonconvex problems can be created
(for more details of the procedure see the following algorithm). In our experi-
ments, we used 6 different combinations of the valuesnf , andps to create both
convex and nonconvex problems. The values used werenf = 5 and 10, and
ps = 0, 0.6 and1. The numbers of variables used weren = 50, 200 and1000.

In the following algorithm some more details of the data generation are given:

31

PROGRAM Create Data for Maximum of Quadratics
INITIALIZE Select a lower and upper bound for random
number generator L, U ∈ R. Fix the dimension n, the
number of elemental functions nf and the sparsity
parameter ps (0 ≤ ps ≤ 1). Set icon = 1, if a convex
problem is needed and icon = 0, otherwise;

IF icon = 0 THEN

Set c1 = L and randomly generate cj ∈ (L, U) for
j = 2, . . . , nf;

ELSE

Randomly generate cj ∈ (L, U) for j = 1, . . . , nf;
END IF

FOR ALL j = 1, . . . , nf randomly generate vectors bj ∈ (L, U)n;
FOR ALL j = 1, . . . , nf randomly generate symmetric matrices

Aj ∈ (L, U)n×n such that there exist approximately
psn

2 + n nonzero entries and all the diagonal elements
are nonzero.
IF icon = 1 THEN

Add the identity matrix multiplied by one plus the
absolute value of the smallest eigenvalue to each
matrix Aj to obtain positive definite matrices;

ELSE

Add the identity matrix multiplied by one plus the
absolute value of the smallest eigenvalue to the
first matrix A1. Otherwise, check that the minimum
eigenvalue is negative for each matrix Aj (with
j = 2, . . . , nf). Regenerate any Aj whose eigenvalue is
non-negative;

END IF

Randomly generate the starting point x1 ∈ (L, U)n;
END Create Data for Maximum of Quadratics

Note: In the nonconvex case we enforce the first elemental function to be convex
(i.e. the matrixA1 to be positive definite) in order to obtain finite results. This
does not restrict the overall nonconvexity of the problem (assumingnf > 1) since
atx = 0 all the nonconvex elemental functions have a larger value than the convex
one.

The MatLab-filemakeproblem.m for generating the random data as well
as the Fortran subroutinemaxq.f that reads the data-file and calculates the
value of the function and subgradient are available for downloading from
http://napsu.karmitsa.fi/testproblems/.

32

References

[1] ÄYRÄM Ö, S.Knowledge Mining Using Robust Clustering. PhD thesis, Uni-
versity of Jyv̈askyl̈a, Department of Mathematical Information Technology,
2006.

[2] BAGIROV, A. M., AND GANJEHLOU, A. N. A quasisecant method for
minimizing nonsmooth functions.Optimization Methods and Software 25,
1 (2009), 3–18.

[3] BAGIROV, A. M., AND GANJEHLOU, A. N. A secant method for nons-
mooth optimization. Submitted, 2009.

[4] BAGIROV, A. M., KARASOZEN, B., AND SEZER, M. Discrete gradient
method: A derivative free method for nonsmooth optimization. Journal of
Optimization Theory and Applications 137 (2008), 317–334.

[5] BECK, A., AND TEBOULLE, M. Mirror descent and nonlinear projected
subgradient methods for convex optimization.Operations Research Letters
31, 3 (2003), 167–175.

[6] BEN-TAL , A., AND NEMIROVSKI, A. Non-Euclidean restricted memory
level method for large-scale convex optimization.Mathematical Program-
ming 102, 3 (2005), 407–456.

[7] B IHAIN , A. Optimization of upper semidifferentiable functions.Journal of
Optimization Theory and Applications 4 (1984), 545–568.

[8] BRADLEY, P. S., FAYYAD , U. M., AND MANGASARIAN , O. L. Mathemat-
ical programming for data mining: Formulations and challenges.INFORMS
Journal on Computing 11 (1999), 217–238.

[9] BURKE, J. V., LEWIS, A. S., AND OVERTON, M. L. A robust gradient
sampling algorithm for nonsmooth, nonconvex optimization. SIAM Journal
on Optimization 15 (2005), 751–779.

[10] BYRD, R. H., NOCEDAL, J., AND SCHNABEL, R. B. Representations of
quasi-Newton matrices and their use in limited memory methods. Mathe-
matical Programming 63 (1994), 129–156.

[11] CLARKE , F. H. Optimization and Nonsmooth Analysis. Wiley-Interscience,
New York, 1983.

[12] CLARKE , F. H., LEDYAEV, Y. S., STERN, R. J.,AND WOLENSKI, P. R.
Nonsmooth Analysis and Control Theory. Springer, New York, 1998.

33

[13] DEMYANOV, V. F., BAGIROV, A. M., AND RUBINOV, A. M. A method of
truncated codifferential with application to some problems of cluster analy-
sis. Journal of Global Optimization 23, 1 (2002), 63–80.

[14] DOLAN , E. D.,AND MORÉ, J. J. Benchmarking optimization software with
performance profiles.Mathematical Programming 91 (2002), 201–213.

[15] GAUDIOSO, M., AND MONACO, M. F. Variants to the cutting plane ap-
proach for convex nondifferentiable optimization.Optimization 25 (1992),
65–75.

[16] HAARALA , M. Large-Scale Nonsmooth Optimization: Variable Metric
Bundle Method with Limited Memory. PhD thesis, University of Jyväskyl̈a,
Department of Mathematical Information Technology, 2004.

[17] HAARALA , M., M IETTINEN, K., AND M ÄKEL Ä , M. M. New limited
memory bundle method for large-scale nonsmooth optimization. Optimiza-
tion Methods and Software 19, 6 (2004), 673–692.

[18] HAARALA , N., MIETTINEN, K., AND M ÄKEL Ä , M. M. Globally conver-
gent limited memory bundle method for large-scale nonsmooth optimization.
Mathematical Programming 109, 1 (2007), 181–205.

[19] HASLINGER, J., AND NEITTAANM ÄKI , P. Finite Element Approximation
for Optimal Shape, Material and Topology Design, 2nd ed. John Wiley &
Sons, Chichester, 1996.

[20] HIRIART-URRUTY, J.-B., AND LEMARÉCHAL, C. Convex Analysis and
Minimization Algorithms II. Springer-Verlag, Berlin, 1993.

[21] KAPPEL, F., AND KUNTSEVICH, A. An implementation of Shor’sr-
algorithm. Computational Optimization and Applications 15 (2000), 193–
205.

[22] K ÄRKK ÄINEN , T., AND HEIKKOLA , E. Robust formulations for training
multilayer perceptrons.Neural Computation 16 (2004), 837–862.

[23] KARMITSA , N., MÄKEL Ä , M. M., AND ALI , M. M. Limited memory in-
terior point bundle method for large inequality constrained nonsmooth min-
imization. Applied Mathematics and Computation 198, 1 (2008), 382–400.

[24] K IWIEL , K. C. Methods of Descent for Nondifferentiable Optimization.
Lecture Notes in Mathematics 1133. Springer-Verlag, Berlin, 1985.

[25] K IWIEL , K. C. Proximity control in bundle methods for convex nondiffer-
entiable minimization.Mathematical Programming 46 (1990), 105–122.

34

[26] KUNTSEVICH, A., AND KAPPEL, F. SolvOpt — the solver for local nonlin-
ear optimization problems. Karl-Franzens University of Graz: Graz, Austria,
1997.

[27] LEMARÉCHAL, C. Nondifferentiable optimization. InOptimization, G. L.
Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, Eds. Elsevier North-
Holland, Inc., New York, 1989, pp. 529–572.

[28] LUKŠAN, L. Dual method for solving a special problem of quadratic pro-
gramming as a subproblem at linearly constrained nonlinearminmax ap-
proximation.Kybernetika 20 (1984), 445–457.

[29] LUKŠAN, L., TU̇MA , M., ŠI ŠKA, M., VLČEK, J., AND RAMEŠOVÁ , N.
UFO 2002. Interactive system for universal functional optimization. Techni-
cal Report 883, Institute of Computer Science, Academy of Sciences of the
Czech Republic, Prague, 2002.

[30] LUKŠAN, L., AND VLČEK, J. A bundle-Newton method for nonsmooth
unconstrained minimization.Mathematical Programming 83 (1998), 373–
391.

[31] LUKŠAN, L., AND VLČEK, J. Globally convergent variable metric method
for convex nonsmooth unconstrained minimization.Journal of Optimization
Theory and Applications 102, 3 (1999), 593–613.

[32] LUKŠAN, L., AND VLČEK, J. NDA: Algorithms for nondifferentiable op-
timization. Technical Report 797, Institute of Computer Science, Academy
of Sciences of the Czech Republic, Prague, 2000.

[33] LUKŠAN, L., AND VLČEK, J. Test problems for nonsmooth unconstrained
and linearly constrained optimization. Technical Report 798, Institute of
Computer Science, Academy of Sciences of the Czech Republic, Prague,
2000.

[34] M ÄKEL Ä , M. M. Survey of bundle methods for nonsmooth optimization.
Optimization Methods and Software 17, 1 (2002), 1–29.

[35] M ÄKEL Ä , M. M. Multiobjective proximal bundle method for nonconvex
nonsmooth optimization: Fortran subroutine MPBNGC 2.0. Reports of the
Department of Mathematical Information Technology, Series B. Scientific
Computing, B. 13/2003 University of Jyväskyl̈a, Jyv̈askyl̈a, 2003.

[36] M ÄKEL Ä , M. M., M IETTINEN, M., LUKŠAN, L., AND VLČEK, J. Com-
paring nonsmooth nonconvex bundle methods in solving hemivariational in-
equalities.Journal of Global Optimization 14 (1999), 117–135.

35

[37] M ÄKEL Ä , M. M., AND NEITTAANM ÄKI , P. Nonsmooth Optimization:
Analysis and Algorithms with Applications to Optimal Control. World Sci-
entific Publishing Co., Singapore, 1992.

[38] M IETTINEN, K., AND M ÄKEL Ä , M. M. Synchronous approach in interac-
tive multiobjective optimization.European Journal of Operational Research
170, 3 (2006), 909–922.

[39] M ISTAKIDIS , E. S.,AND STAVROULAKIS , G. E. Nonconvex Optimization
in Mechanics. Smooth and Nonsmooth Algorithms, Heuristics and Engineer-
ing Applications by the F.E.M. Kluwert Academic Publishers, Dordrecht,
1998.

[40] MOREAU, J. J., PANAGIOTOPOULOS, P. D.,AND STRANG, G., Eds.Topics
in Nonsmooth Mechanics. Birkhäuser Verlag, Basel, 1988.

[41] OUTRATA , J., KOČVARA , M., AND ZOWE, J. Nonsmooth Approach to
Optimization Problems With Equilibrium Constraints. Theory, Applications
and Numerical Results. Kluwert Academic Publisher, Dordrecht, 1998.

[42] ROBINSON, S. M. Linear convergence of epsilon-subgradient descent meth-
ods for a class of convex functions.Mathematical Programming 86 (1999),
41–50.

[43] SAGASTIZÁBAL , C., AND SOLODOV, M. An infeasible bundle method for
nonsmooth convex constrained optimization without a penalty function or a
filter. SIAM Journal on Optimization 16, 1 (2005), 146–169.

[44] SCHRAMM , H., AND ZOWE, J. A version of the bundle idea for minimizing
a nonsmooth function: Conceptual idea, convergence analysis, numerical
results.SIAM Journal on Optimization 2, 1 (1992), 121–152.

[45] SHOR, N. Z. Minimization Methods for Non-Differentiable Functions.
Springer-Verlag, Berlin, 1985.

[46] URYASEV, S. P. Algorithms for nondifferentiable optimization problems.
Journal of Optimization Theory and Applications 71 (1991), 359–388.

[47] VLČEK, J.,AND LUKŠAN, L. Globally convergent variable metric method
for nonconvex nondifferentiable unconstrained minimization. Journal of Op-
timization Theory and Applications 111, 2 (2001), 407–430.

36

Lemminkäisenkatu 14 A, 20520 Turku, Finland | www.tucs.fi

University of Turku
• Department of Information Technology

• Department of Mathematics

Åbo Akademi University
• Department of Computer Science

• Institute for Advanced Management Systems Research

Turku School of Economics and Business Administration
• Institute of Information Systems Sciences

ISBN 978-952-12-2367-9
ISSN 1239-1891

